Seneca Valley virus (SVV-001) is an oncolytic picornavirus with selective tropism for a subset of human cancers with neuroendocrine differentiation. To characterize further the specificity of SVV-001 and its patterns and kinetics of intratumoral spread, bacterial plasmids encoding a cDNA clone of the full-length wild-type virus and a derivative virus expressing GFP were generated. The full-length cDNA of the SVV-001 RNA genome was cloned into a bacterial plasmid under the control of the T7 core promoter sequence to create an infectious cDNA clone, pNTX-09.
View Article and Find Full Text PDFThe RNA genome of Seneca Valley virus (SVV), a recently identified picornavirus, contains an internal ribosome entry site (IRES) element which has structural and functional similarity to that from classical swine fever virus (CSFV) and hepatitis C virus, members of the Flaviviridae. The SVV IRES has an absolute requirement for the presence of a short region of virus-coding sequence to allow it to function either in cells or in rabbit reticulocyte lysate. The IRES activity does not require the translation initiation factor eIF4A or intact eIF4G.
View Article and Find Full Text PDFPurpose: Seneca Valley Virus (SVV-001) is a novel naturally occurring replication-competent picornavirus with potent and selective tropism for neuroendocrine cancer cell types, including small cell lung cancer. We conducted a first-in-human, first-in-class phase I clinical trial of this agent in patients with cancers with neuroendocrine features, including small cell lung cancer.
Experimental Design: Clinical evaluation of single intravenous doses in patients with cancers with neuroendocrine features was performed across five log-increments from 10(7) to 10(11) vp/kg.
The potency and selectivity of a series of 1-{(1S)-2-[amino]-1-[3-(trifluoromethoxy)phenyl]ethyl}cyclohexanol analogues are described. These compounds were prepared to improve in vitro metabolic stability and achieve brain penetration. Compound 13 (WAY-260022, NRI-022) was found to be a potent inhibitor of norepinephrine reuptake and demonstrated excellent selectivity over the serotonin and dopamine transporters.
View Article and Find Full Text PDFA series of heterocyclic cycloalkanol ethylamines have been prepared to expand our norepinephrine reuptake inhibitor (NRI) program. Synthesis of a variety of heterocycles identified (+)-S-21, a potent NRI efficacious in an animal model for thermoregulatory dysfunction.
View Article and Find Full Text PDFThe SAR of a series of 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols as monoamine reuptake inhibitors, with a goal to improve both potency toward inhibiting the norepinephrine transporter and selectivity over the serotonin transporter, is reported. The effect of specific substitution on both the 3-phenyl group and the indole moiety were explored. This study led to the discovery of compound 20 which inhibited the norepinephrine transporter with an IC50 value of 4 nM while exhibiting 86-fold selectivity over the serotonin transporter.
View Article and Find Full Text PDFFurther exploration of the cycloalkanol ethylamine scaffold, of which venlafaxine ( 1) is a member, was undertaken to develop novel and selective norepinephrine reuptake inhibitors (NRIs) for evaluation in a variety of predictive animal models. These efforts led to the discovery of a piperazine-containing analogue, 17g (WY-46824), that exhibited potent norepinephrine reuptake inhibition, excellent selectivity over the serotonin transporter, but no selectivity over the dopamine transporter. Synthesis and testing of a series of cyclohexanol ethylpiperazines identified ( S)-(-)- 17i (WAY-256805), a potent norepinephrine reuptake inhibitor (IC 50 = 82 nM, K i = 50 nM) that exhibited excellent selectivity over both the serotonin and dopamine transporters and was efficacious in animal models of depression, pain, and thermoregulatory dysfunction.
View Article and Find Full Text PDFBackground: Numerous clinical trials have demonstrated that oncolytic viruses can elicit antitumor responses when they are administered directly into localized cancers. However, the treatment of metastatic disease with oncolytic viruses has been challenging due to the inactivation of viruses by components of human blood and/or to inadequate tumor selectivity.
Methods: We determined the cytolytic potential and selectivity of Seneca Valley Virus-001 (SVV-001), a newly discovered native picornavirus, in neuroendocrine and pediatric tumor cell lines and normal cells.
Menopause-associated thermoregulatory dysfunction, including hot flushes and night sweats, is effectively treated by hormonal therapies that include estrogens. Evidence suggests that estrogen regulates serotonin 2A (5-HT(2A)) receptor expression and that 5-HT(2A) receptors are involved in thermoregulation. Therefore, the role of 5-HT(2A) receptors in thermoregulation was assessed in two rat models of ovariectomy-induced thermoregulatory dysfunction.
View Article and Find Full Text PDFOncolytic adenoviral vectors selectively replicate in and lyse human tumor cells, providing a promising means for targeted tumor destruction. However, oncolytic vectors have limited capacity for incorporation of additional genetic material that could encode therapeutic transgenes and/or transcriptional regulatory control elements to augment the efficacy and/or safety of the vector. Therefore, we hypothesized that coadministration of an oncolytic vector with a replication-defective, gutless adenoviral vector encoding a therapeutic transgene would result in replication of both vectors within a tumor and potentiate antitumor efficacy relative to the use of either vector alone.
View Article and Find Full Text PDFDue to the importance of vascular endothelial growth factor (VEGF) in the neovascularization of solid tumors, a clear understanding of how VEGF is regulated in normal and tumor cells is warranted. We investigated insulin-like growth factor (IGF)-I-stimulated signaling pathways that increase the rate of VEGF synthesis in primary cultures of normal prostate epithelial cells (PrEC). IGF-I increased the secretion of VEGF(165) into PrEC growth medium and stimulated transcription of a reporter gene driven by a 1.
View Article and Find Full Text PDF