Publications by authors named "Kevin Beja"

De novo metastatic prostate cancer is highly aggressive, but the paucity of routinely collected tissue has hindered genomic stratification and precision oncology. Here, we leveraged a rare study of surgical intervention in 43 de novo metastatic prostate cancers to assess somatic genotypes across 607 synchronous primary and metastatic tissue regions plus circulating tumor DNA. Intra-prostate heterogeneity was pervasive and impacted clinically relevant genes, resulting in discordant genotypes between select primary restricted regions and synchronous metastases.

View Article and Find Full Text PDF
Article Synopsis
  • The CALGB 90203 trial investigated the effectiveness of neoadjuvant chemohormonal therapy for high-risk localized prostate cancer prior to radical prostatectomy, examining tumor molecular features for insights on therapy response and resistance.
  • The study involved 471 tumor samples, comparing those from patients who received therapy (docetaxel plus androgen deprivation) against those who underwent surgery alone, utilizing DNA sequencing and RNA analysis to assess changes and outcomes.
  • Results indicated that post-therapy tumors had lower tumor fractions, but higher fractions correlated with aggressive features and poor prognosis; alterations like enriched TP53 were linked to shorter survival, while high expression of certain genes suggested remaining active cancer cells.
View Article and Find Full Text PDF
Article Synopsis
  • * Although ctDNA and tissue biopsies show some similarities in cancer-driving mutations, most of the ctDNA is contributed by only a small number of individual metastases.
  • * The research highlights how ctDNA analysis can track changes in genomic drivers of treatment resistance, particularly the role of androgen receptor augmentation, and suggests the potential for liquid biopsies to aid in comprehensive cancer research and monitoring.
View Article and Find Full Text PDF

Purpose: Cross-resistance renders multiple lines of androgen receptor (AR) signaling inhibitors increasingly futile in metastatic castration-resistant prostate cancer (mCRPC). We sought to determine acquired genomic contributors to cross-resistance.

Experimental Design: We collected 458 serial plasma cell-free DNA samples at baseline and progression timepoints from 202 patients with mCRPC receiving sequential AR signaling inhibitors (abiraterone and enzalutamide) in a randomized phase II clinical trial (NCT02125357).

View Article and Find Full Text PDF

Purpose: DNA damage repair (DDR) defects are common across cancer types and can indicate therapeutic vulnerability. Optimal exploitation of DDR defects in prostate cancer requires new diagnostic strategies and a better understanding of associated clinical genomic features.

Experimental Design: We performed targeted sequencing of 1,615 plasma cell-free DNA samples from 879 patients with metastatic prostate cancer.

View Article and Find Full Text PDF

Background: Activating mutations in AKT1 and PIK3CA are undercharacterised in metastatic castration-resistant prostate cancer (mCRPC), but are linked to activation of phosphatidylinositol 3-kinase (PI3K) signalling and sensitivity to pathway inhibitors in other cancers.

Objective: To determine the prevalence, genomic context, and clinical associations of AKT1/PIK3CA activating mutations in mCRPC.

Design, Setting, And Participants: We analysed targeted cell-free DNA (cfDNA) sequencing data from 599 metastatic prostate cancer patients with circulating tumour DNA (ctDNA) content above 2%.

View Article and Find Full Text PDF

Purpose: DNA mismatch repair defects (MMRd) and tumor hypermutation are rare and under-characterized in metastatic prostate cancer (mPC). Furthermore, because hypermutated MMRd prostate cancers can respond to immune checkpoint inhibitors, there is an urgent need for practical detection tools.

Experimental Design: We analyzed plasma cell-free DNA-targeted sequencing data from 433 patients with mPC with circulating tumor DNA (ctDNA) purity ≥2%.

View Article and Find Full Text PDF

Purpose: Circulating tumor DNA (ctDNA) sequencing provides a minimally invasive method for tumor molecular stratification. Commercial ctDNA sequencing is increasingly used in the clinic, but its accuracy in metastatic prostate cancer is untested. We compared the commercial Guardant360 ctDNA test against an academic sequencing approach for profiling metastatic prostate cancer.

View Article and Find Full Text PDF

Background: In PTEN-loss models, the phosphatidylinositol 3-kinase (PI3K)/AKT and androgen receptor signaling pathways cross-regulate by reciprocal feedback whereby inhibition of one activates the other, creating a rationale for co-targeting. We studied the irreversible, pan-isoform inhibitor of Class I PI-3K PX-866 singly (part A) and with abiraterone acetate (AA) in patients on AA with rising prostate-specific antigen (PSA) (part B).

Patients And Methods: The primary endpoint was lack of progression at 12 weeks.

View Article and Find Full Text PDF

A large portion of the genome is contained within heterochromatic regions of chromosomes, predominantly at centromeres and telomeres. The remaining euchromatic portions of the genome have been extensively characterized with respect to gene organization, function and regulation. However, it has been difficult to derive similar data for sequences within centromeric (centric) heterochromatin because these regions have not been as amenable to analysis by standard genetic and molecular tools.

View Article and Find Full Text PDF

Background: Several systemic therapeutic options exist for metastatic castrate-sensitive prostate cancer (mCSPC). Circulating tumor DNA (ctDNA) can molecularly profile metastatic castration-resistant prostate cancer and can influence decision-making, but remains untested in mCSPC.

Objective: To determine ctDNA abundance at de novo mCSPC diagnosis and whether ctDNA provides complementary clinically relevant information to a prostate biopsy.

View Article and Find Full Text PDF

Prostate cancer has a low somatic mutation rate but non-coding regions remain underexplored. We sequenced the untranslated regions (UTRs) of 72 established driver genes in 428 patients with metastatic prostate cancer and identified 3'-UTR mutations in 12% of patients. The mutations were predominantly insertions or deletions, covered the entire UTR without motif enrichment, and were not detected in other cancers.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are malignant cells released into the bloodstream with the potential to form metastases in secondary sites. These cells, acquired non-invasively, represent a sample of highly relevant tumor tissue that is an alternative to difficult and low-yield tumor biopsies. In recent years, there has been growing interest in genomic profiling of CTCs to enable longitudinal monitoring of the tumor's adaptive response to therapy.

View Article and Find Full Text PDF

Primary resistance to androgen receptor (AR)-directed therapies in metastatic castration-resistant prostate cancer (mCRPC) is poorly understood. We randomized 202 patients with treatment-naïve mCRPC to abiraterone or enzalutamide and performed whole-exome and deep targeted 72-gene sequencing of plasma cell-free DNA prior to therapy. For these agents, which have never been directly compared, time to progression was similar.

View Article and Find Full Text PDF

Background: Real-time knowledge of the somatic genome can influence management of patients with metastatic castration-resistant prostate cancer (mCRPC). While routine metastatic tissue biopsy is challenging in mCRPC, plasma circulating tumor DNA (ctDNA) has emerged as a minimally invasive tool to sample the tumor genome. However, no systematic comparisons of matched "liquid" and "solid" biopsies have been performed that would enable ctDNA profiling to replace the need for direct tissue sampling.

View Article and Find Full Text PDF

The combination of docetaxel chemotherapy and androgen deprivation therapy (ADT) has become a standard treatment for patients with metastatic prostate cancer. The recently accrued phase III CALGB 90203 trial was designed to investigate the clinical effectiveness of this treatment approach earlier in the disease. Specimens from this trial offer a unique opportunity to interrogate the acute molecular response to docetaxel and ADT and identify potential biomarkers.

View Article and Find Full Text PDF

Targeted agents and immunotherapies promise to transform the treatment of metastatic bladder cancer, but therapy selection will depend on practical tumor molecular stratification. Circulating tumor DNA (ctDNA) is established in several solid malignancies as a minimally invasive tool to profile the tumor genome in real-time, but is critically underexplored in bladder cancer. We applied a combination of whole-exome sequencing and targeted sequencing across 50 bladder cancer driver genes to plasma cell-free DNA (cfDNA) from 51 patients with aggressive bladder cancer, including 37 with metastatic disease.

View Article and Find Full Text PDF

Approximately 20% of metastatic prostate cancers harbor mutations in genes required for DNA repair by homologous recombination repair (HRR) such as HRR defects confer synthetic lethality to PARP inhibitors (PARPi) such as olaparib and talazoparib. In ovarian or breast cancers, olaparib resistance has been associated with HRR restoration, including by mutation reversion. Whether similar mechanisms operate in prostate cancer, and could be detected in liquid biopsies, is unclear.

View Article and Find Full Text PDF

Background: Germline mutations in DNA repair genes were recently reported in 8-12% of patients with metastatic castration-resistant prostate cancer (mCRPC). It is unknown whether these mutations associate with differential response to androgen receptor (AR)-directed therapy.

Objective: To determine the clinical response of mCRPC patients with germline DNA repair defects to AR-directed therapies and to establish whether biallelic DNA repair gene loss is detectable in matched circulating tumor DNA (ctDNA).

View Article and Find Full Text PDF

N-Acetylglucosamine β-O-linked to nucleocytoplasmic proteins (O-GlcNAc) is implicated in the regulation of gene expression in organisms, from humans to Drosophila melanogaster. Within Drosophila, O-GlcNAc transferase (OGT) is one of the Polycomb group proteins (PcGs) that act through Polycomb group response elements (PREs) to silence homeotic (HOX) and other PcG target genes. Using Drosophila, we identify new O-GlcNAcylated PcG proteins and develop an antibody-free metabolic feeding approach to chemoselectively map genomic loci enriched in O-GlcNAc using next-generation sequencing.

View Article and Find Full Text PDF

Motivation: Successful development and application of precision oncology approaches require robust elucidation of the genomic landscape of a patient's cancer and, ideally, the ability to monitor therapy-induced genomic changes in the tumour in an inexpensive and minimally invasive manner. Thanks to recent advances in sequencing technologies, 'liquid biopsy', the sampling of patient's bodily fluids such as blood and urine, is considered as one of the most promising approaches to achieve this goal. In many cancer patients, and especially those with advanced metastatic disease, deep sequencing of circulating cell free DNA (cfDNA) obtained from patient's blood yields a mixture of reads originating from the normal DNA and from multiple tumour subclones-called circulating tumour DNA or ctDNA.

View Article and Find Full Text PDF

Importance: The molecular landscape underpinning response to the androgen receptor (AR) antagonist enzalutamide in patients with metastatic castration-resistant prostate cancer (mCRPC) is undefined. Consequently, there is an urgent need for practical biomarkers to guide therapy selection and elucidate resistance. Although tissue biopsies are impractical to perform routinely in the majority of patients with mCRPC, the analysis of plasma cell-free DNA (cfDNA) has recently emerged as a minimally invasive method to explore tumor characteristics.

View Article and Find Full Text PDF