Publications by authors named "Kevin B Jensen"

Histone deacetylases (HDACs) play a significant role in a plant's development and response to various environmental stimuli by regulating the gene transcription. However, remain unidentified in cotton. In this study, a total of 29 HDACs were identified in allotetraploid , while 15 and 13 HDACs were identified in and , respectively.

View Article and Find Full Text PDF

Post-translational modifications are involved in regulating diverse developmental processes. Histone acetyltransferases (HATs) play vital roles in the regulation of chromation structure and activate the gene transcription implicated in various cellular processes. However, HATs in cotton, as well as their regulation in response to developmental and environmental cues, remain unidentified.

View Article and Find Full Text PDF

The genome constitution of tetraploid Roegneria alashanica Keng has been in question for a long time. Most scientific studies have suggested that R. alashanica had two versions of the St genome, StSt, similar to that of Pseudoroegneria elytrigioides (C.

View Article and Find Full Text PDF

Simple sequence repeat technology based on expressed sequence tag (EST-SSR) is a useful genomic tool for genome mapping, characterizing plant species relationships, elucidating genome evolution, and tracing genes on alien chromosome segments. EST-SSR primers developed from three perennial diploid species of Triticeae, Pseudoroegneria spicata (Pursh) Á. Löve (having St genome), Thinopyrum bessarabicum (Savul.

View Article and Find Full Text PDF

Intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey), a segmental autoallohexaploid (2n = 6x = 42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Rhizomes are prostrate subterranean stems that provide primitive mechanisms of vegetative dispersal, survival, and regrowth of perennial grasses and other monocots. The extent of rhizome proliferation varies greatly among grasses, being absent in cereals and other annuals, strictly confined in caespitose perennials, or highly invasive in some perennial weeds. However, genetic studies of rhizome proliferation are limited and genes controlling rhizomatous growth habit have not been elucidated.

View Article and Find Full Text PDF

Grass inflorescence and stem branches show recognizable architectural differences among species. The inflorescence branches of Triticeae cereals and grasses, including wheat, barley, and 400-500 wild species, are usually contracted into a spike formation, with the number of flowering branches (spikelets) per node conserved within species and genera. Perennial Triticeae grasses of genus Leymus are unusual in that the number of spikelets per node varies, inflorescences may have panicle branches, and vegetative stems may form subterranean rhizomes.

View Article and Find Full Text PDF

Elymus L. is the largest and most complex genus in the Triticeae tribe of grasses with approximately 150 polyploid perennial species occurring worldwide. We report here the first genetic linkage map for Elymus.

View Article and Find Full Text PDF

Allotetraploid (2n = 4x = 28) Leymus triticoides and Leymus cinereus are divergent perennial grasses, which form fertile hybrids. Genetic maps with n = 14 linkage groups (LG) comprised with 1,583 AFLP and 67 heterologous anchor markers were previously used for mapping quantitative trait loci (QTLs) in these hybrids, and chromosomes of other Leymus wildryes have been transferred to wheat. However, identifications of the x = 7 homoeologous groups were tenuous and genetic research has been encumbered by a lack of functional, conserved gene marker sequences.

View Article and Find Full Text PDF

Orchardgrass, or cocksfoot [Dactylis glomerata (L.)], has been naturalized on nearly every continent and is a commonly used species for forage and hay production. All major cultivated varieties of orchardgrass are autotetraploid, and few tools or information are available for functional and comparative genetic analyses and improvement of the species.

View Article and Find Full Text PDF

Wild Thinopyrum grasses are important gene pools for forage and cereal crops. Knowledge of their chromosome organizations is pivotal for efficient utilization of this important gene pool in germplasm enhancement programs. Expressed sequence tags derived simple sequence repeat (EST-SSR) markers for Thinopyrum bessarabicum, T.

View Article and Find Full Text PDF

Pseudoroegneria spicata (Poaceae: Triticeae) is an abundant, allogamous species widely adapted to the temperate, semiarid steppe and open woodland regions of western North America. Amplified fragment length polymorphism (AFLP), model-based Bayesian clustering, and other methods of hypothesis testing were used to investigate genetic diversity and population structure among 565 P. spicata plants from 82 localities representing much of the species distribution.

View Article and Find Full Text PDF

Molecular genetic maps were constructed for two full-sib populations, TTC1 and TTC2, derived from two Leymus triticoides x Leymus cinereus hybrids and one common Leymus triticoides tester. Informative DNA markers were detected using 21 EcoRI-MseI and 17 PstI-MseI AFLP primer combinations, 36 anchored SSR or STS primer pairs, and 9 anchored RFLP probes. The 164-sib TTC1 map includes 1069 AFLP markers and 38 anchor loci in 14 linkage groups spanning 2001 cM.

View Article and Find Full Text PDF