Publications by authors named "Kevin Atkins"

While neutrophil extracellular traps (NETs) have previously been linked to some diabetes-associated complications, such as dysfunctional wound healing, their potential role in diabetic vascular dysfunction has not been studied. Diabetic Akita mice were crossed with either or mice to generate NET-deficient diabetic mice. By 24 weeks of age, Akita aortae showed markedly impaired relaxation in response to acetylcholine, indicative of vascular dysfunction.

View Article and Find Full Text PDF

Increased myeloperoxidase (MPO) expression and activity are associated with atherosclerotic disease in patients with chronic kidney disease (CKD). However, the causal relationship between MPO and the development and progression of atherosclerosis in patients with CKD is unknown. Eight-week-old male low-density-lipoprotein-receptor-deficient mice were subjected to 5/6 nephrectomy, irradiated, and transplanted with bone marrow from MPO-deficient mice to induce bone marrow MPO deletion (CKD-bMPOKO) or bone marrow from WT mice as a control to maintain preserved bone marrow MPO(CKD-bMPOWT).

View Article and Find Full Text PDF

Increased myeloperoxidase (MPO) levels and activity are associated with increased cardiovascular risk among individuals with chronic kidney disease (CKD). However, a lack of good animal models for examining the presence and catalytic activity of MPO in vascular lesions has impeded mechanistic studies into CKD-associated cardiovascular diseases. Here, we show for the first time that exaggerated atherosclerosis in a pathophysiologically relevant CKD mouse model is associated with increased macrophage-derived MPO activity.

View Article and Find Full Text PDF

Activation of JAK-STAT signaling has been implicated in the pathogenesis of diabetic kidney disease. An increased expression of JAK-STAT genes was found in kidney glomerular cells, including podocytes, in patients with early diabetic kidney disease. However, it is not known whether increased expression of JAK or STAT isoforms in glomerular cells can lead to worsening nephropathy in the setting of diabetes.

View Article and Find Full Text PDF

Regulator of G protein signaling (RGS) proteins have emerged as novel drug targets since their discovery almost two decades ago. RGS2 has received particular interest in cardiovascular research due to its role in regulating Gqsignaling in the heart and vascular smooth muscle. RGS2(-/-)mice are hypertensive, prone to heart failure, and display accelerated kidney fibrosis.

View Article and Find Full Text PDF

Previous studies have shown that expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice and that total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity in hypertension. To demonstrate that the effect of GLUT4 overexpression on vascular responses is dependent on vascular smooth muscle GLUT4 rather than on some systemic effect we developed and tested smooth-muscle-specific GLUT4 transgenic mice (SMG4). When made hypertensive with angiotensin II, both wild-type and SMG4 mice exhibited similarly increased systolic blood pressure.

View Article and Find Full Text PDF

Podocytes are highly specialized epithelial cells with complex actin cytoskeletal architecture crucial for maintenance of the glomerular filtration barrier. The mammalian Rho GTPases Rac1 and Cdc42 are molecular switches that control many cellular processes, but are best known for their roles in the regulation of actin cytoskeleton dynamics. Here, we employed podocyte-specific Cre-lox technology and found that mice with deletion of Rac1 display normal podocyte morphology without glomerular dysfunction well into adulthood.

View Article and Find Full Text PDF

Regulator of G protein signaling 2 (RGS2), a G(q)-specific GTPase-activating protein, is strongly implicated in cardiovascular function. RGS2(-/-) mice are hypertensive and prone to heart failure, and several rare human mutations that accelerate RGS2 degradation have been identified among patients with hypertension. Therefore, pharmacological up-regulation of RGS2 protein levels might be beneficial.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor (PPAR)-gamma ligands, thiazolidinediones, have been demonstrated to regulate vascular reactivity. We examined the effect of pioglitazone (PIO; 20 muM) in rat primary cultured aortic smooth muscle cells on constitutive phosphorylation of the regulatory subunit of myosin phosphatase (MYPT). PIO decreased the phosphorylation of Thr(697) on MYPT within 15 min, and the inhibition was maintained up to 6 h.

View Article and Find Full Text PDF

Background: Genetic and environmental factors have important roles in multiple sclerosis (MS) susceptibility. A clear maternal effect has been shown in several population-based studies. This parent-of-origin effect could result from factors operating during gestation.

View Article and Find Full Text PDF

Conventional two-dimensional imaging for assessing and treatment planning orthognathic surgery has limitations. Three-dimensional imaging offers the ability to more accurately portray maxillofacial anatomy. Three-dimensional CT-based models can be generated for assessment of the dentofacial deformity.

View Article and Find Full Text PDF

We previously showed that GLUT4 expression is decreased in arterial smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats and that GLUT4-knockout mice have enhanced arterial reactivity. Therefore, we hypothesized that increased GLUT4 expression in vascular smooth muscle in vivo would prevent enhanced arterial reactivity and possibly reduce blood pressure in DOCA-salt hypertensive mice. Adult wild-type (WT) and GLUT4 transgenic (TG) mice were subjected to DOCA-salt hypertension with uninephrectomy or underwent uninephrectomy and remained normotensive.

View Article and Find Full Text PDF

Objective: We hypothesized that GLUT4 is a predominant facilitative glucose transporter in vascular smooth muscle cells (VSMCs), and GLUT4 is necessary for agonist-induced VSMC contraction.

Methods And Results: Glucose deprivation and indinavir, a GLUT4 antagonist, were used to assess the role of GLUT4 and non-GLUT4 transporters in vascular reactivity. In isolated endothelium-denuded mouse aorta, approximately 50% of basal glucose uptake was GLUT4-dependent.

View Article and Find Full Text PDF

Having previously demonstrated that glucose transporter-4 (GLUT4) expression was reduced in aortas and carotid arteries of deoxycorticosterone acetate (DOCA) salt-hypertensive rats, we hypothesized that troglitazone (TG), through activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma), would stabilize GLUT4 expression and possibly preserve the differentiated phenotype in vascular smooth muscle cells. In DOCA salt-hypertensive rats treated with TG (100 mg/day), there was a significant (P < 0.001) decrease in systolic blood pressure (BP; 149.

View Article and Find Full Text PDF

Wnt signaling maintains preadipocytes in an undifferentiated state. When Wnt signaling is enforced, 3T3-L1 preadipocytes no longer undergo adipocyte conversion in response to adipogenic medium. Here we used microarray analyses to identify subsets of genes whose expression is aberrant when differentiation is blocked through enforced Wnt signaling.

View Article and Find Full Text PDF