Chiral 1,2-diamines are privileged scaffolds among bioactive natural products, active pharmaceutical ingredients, ligands for transition-metal-based asymmetric catalysis and organocatalysts. Despite this interest, the construction of chiral 1,2-diamine motifs still remains a challenge. To address this, an iridium(III)-catalyzed intermolecular C(sp )-H amidation reaction was developed.
View Article and Find Full Text PDFVicinal aminoalcohols are widespread structural motifs in bioactive molecules. We report the development of a new dioxazolone reagent containing a p-nitrophenyldifluoromethyl group, which 1. displays a good safety profile; 2.
View Article and Find Full Text PDFThe so-called Securinega alkaloids constitute a class of tetracyclic biologically active specialised metabolites isolated principally from subtropical plants belonging to the Phyllanthaceae family. Following a strategy based on alternative hypotheses for their biosynthesis, an easy and time-efficient divergent synthesis enabled access to twelve of those alkaloids featuring (neo)(nor)securinane skeletons. Moreover, this work permitted to reassign the absolute configurations of (+)-virosine B and (-)-episecurinol A.
View Article and Find Full Text PDFThe facile and convenient preparation of both enantiomers of a [7]helicene scaffold from inexpensive (l)-(+)-tartaric acid and 4-methylstyrene is described. These helical structures were transformed into bis-iodinated ether derivatives in order to explore their potential as precursors of novel chiral organoiodane reagents or as iodoarene pre-catalysts. Promising results were obtained in hydroxylative phenol dearomatization/[4+2] cycloaddition cascade and dearomative spirolactonization reactions with encouraging enantiomeric excesses.
View Article and Find Full Text PDF