Publications by authors named "Kevin A Simonin"

Background And Aims: While genome size limits the minimum sizes and maximum numbers of cells that can be packed into a given leaf volume, mature cell sizes can be substantially larger than their meristematic precursors and vary in response to abiotic conditions. Mangroves are iconic examples of how abiotic conditions can influence the evolution of plant phenotypes.

Methods: Here, we examined the coordination between genome size, leaf cell sizes, cell packing densities and leaf size in 13 mangrove species across four sites in China.

View Article and Find Full Text PDF

Maintaining high rates of photosynthesis in leaves requires efficient movement of CO from the atmosphere to the mesophyll cells inside the leaf where CO is converted into sugar. CO diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages.

View Article and Find Full Text PDF

H O enrichment develops when leaves transpire, but an accurate generalized mechanistic model has proven elusive. We hypothesized that leaf hydraulic architecture may affect the degree to which gradients in H O develop within leaves, influencing bulk leaf stable oxygen isotope enrichment (Δ ) and the degree to which the Péclet effect is relevant in leaves. Leaf hydraulic design predicted the relevance of a Péclet effect to Δ in 19 of the 21 species tested.

View Article and Find Full Text PDF

Maintaining water balance has been a critical constraint shaping the evolution of leaf form and function. However, flowers, which are heterotrophic and relatively short-lived, may not be constrained by the same physiological and developmental factors. We measured physiological parameters derived from pressure-volume curves for leaves and flowers of 22 species to characterize the diversity of hydraulic traits in flowers and to determine whether flowers are governed by the same constraints as leaves.

View Article and Find Full Text PDF

For most angiosperms, producing and maintaining flowers is critical to sexual reproduction, yet little is known about the physiological processes involved in maintaining flowers throughout anthesis. Among extant species, flowers of the genus Calycanthus have the highest hydraulic conductance and vein densities of species measured to date, yet they can wilt by late morning under hot conditions. Here, we combine diurnal measurements of gas exchange and water potential, pressure-volume relations, functional responses of gas exchange, and characterization of embolism formation using high resolution X-ray computed microtomography to determine drought responses of Calycanthus flowers.

View Article and Find Full Text PDF

Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs.

View Article and Find Full Text PDF

The abrupt origin and rapid diversification of the flowering plants during the Cretaceous has long been considered an "abominable mystery." While the cause of their high diversity has been attributed largely to coevolution with pollinators and herbivores, their ability to outcompete the previously dominant ferns and gymnosperms has been the subject of many hypotheses. Common among these is that the angiosperms alone developed leaves with smaller, more numerous stomata and more highly branching venation networks that enable higher rates of transpiration, photosynthesis, and growth.

View Article and Find Full Text PDF
Article Synopsis
  • Stomata act as a resistor in the series of resistances for carbon and water exchange between leaves and the atmosphere, with mesophyll conductance (g) and leaf hydraulic conductance (k) being additional factors.
  • Recent studies indicate that g and k might be coordinated across different species due to common pathways.
  • In cotton, a weak correlation between g and k was noted under growth conditions, but g showed independent regulation from short-term environmental changes and was notably reduced at high CO levels.
View Article and Find Full Text PDF

Mesophyll conductance significantly, and variably, limits photosynthesis but we currently have no reliable method of measurement for C4 plants. An online oxygen isotope technique was developed to allow quantification of mesophyll conductance in C4 plants and to provide an alternative estimate in C3 plants. The technique is compared to an established carbon isotope method in three C3 species.

View Article and Find Full Text PDF

Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated into plant organic matter and atmospheric gases.

View Article and Find Full Text PDF

The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting.

View Article and Find Full Text PDF

The two-pool and Péclet effect models represent two theories describing mechanistic controls underlying leaf water oxygen isotope composition at the whole-leaf level (δ(18) OL ). To test these models, we used a laser spectrometer coupled to a gas-exchange cuvette to make online measurements of δ(18) O of transpiration (δ(18) Otrans ) and transpiration rate (E) in 61 cotton (Gossypium hirsutum) leaves. δ(18) Otrans measurements permitted direct calculation of δ(18) O at the sites of evaporation (δ(18) Oe ) which, combined with values of δ(18) OL from the same leaves, allowed unbiased estimation of the proportional deviation of enrichment of δ(18) OL from that of δ(18) Oe (f) under both steady-state (SS) and non-steady-state (NSS) conditions.

View Article and Find Full Text PDF

Stable oxygen isotope techniques may be a useful tool to investigate the pathways of water movement within leaves. However, implementation of such methods is limited due to uncertainty in the effective path length (L) for the Péclet effect in leaf water enrichment models. Previous studies have found relationships between L and physiological parameters such as transpiration rate (E) and leaf hydraulic conductance (k(leaf)) both within and between species.

View Article and Find Full Text PDF

Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated.

View Article and Find Full Text PDF

During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments.

View Article and Find Full Text PDF

Previous research suggests that the lifetime carbon gain of a leaf is constrained by a tradeoff between metabolism and longevity. The biophysical reasons underlying this tradeoff are not fully understood. We used a photosynthesis-leaf water balance model to evaluate biophysical constraints on carbon gain.

View Article and Find Full Text PDF

Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season.

View Article and Find Full Text PDF

Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog.

View Article and Find Full Text PDF

It is commonly assumed that transpiration does not occur at night because leaf stomata are closed in the dark. We tested this assumption across a diversity of ecosystems and woody plant species by various methods to explore the circumstances when this assumption is false. Our primary goals were: (1) to evaluate the nature and magnitude of nighttime transpiration, E(n), or stomatal conductance, g(n); and (2) to seek potential generalizations about where and when it occurs.

View Article and Find Full Text PDF