Alternatives to petroleum-derived fuels are being sought in order to reduce the world's dependence on non-renewable resources. The most common renewable fuel today is ethanol derived from corn grain (starch) and sugar cane (sucrose). It is expected that there will be limits to the supply of these raw materials in the near future, therefore lignocellulosic biomass is seen as an attractive feedstock for future supplies of ethanol.
View Article and Find Full Text PDFThere is a growing need in the textile industry for more economical and environmentally responsible approaches to improve the scouring process as part of the pretreatment of cotton fabric. Enzymatic methods using pectin-degrading enzymes are potentially valuable candidates in this effort because they could reduce the amount of toxic alkaline chemicals currently used. Using high throughput screening of complex environmental DNA libraries more than 40 novel microbial pectate lyases were discovered, and their enzymatic properties were characterized.
View Article and Find Full Text PDFA 96-capillary array electrophoresis (CAE) instrument has been adapted for large-scale mono- and oligosaccharide analysis and characterization. Operational protocols and data processing tools have been developed to optimize the CAE system for this application. Effects of different additives to the running buffer on efficiency and capillary-to-capillary performance reproducibility have been studied.
View Article and Find Full Text PDFThe inclusion of phytase in monogastric animal feed has the benefit of hydrolyzing indigestible plant phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) to provide poultry and swine with dietary phosphorus. An ideal phytase supplement should have a high temperature tolerance, allowing it to survive the feed pelleting process, a high specific activity at low pHs, and adequate gastric performance. For this study, the performance of a bacterial phytase was optimized by the use of gene site saturation mutagenesis technology.
View Article and Find Full Text PDFBiotechnological techniques enabling the specific removal of sulfur from fossil fuels have been developed. In the past three years there have been important advances in the elucidation of the mechanisms of biodesulfurization; some of the most significant relate to the role of a flavin reductase, DszD, in the enzymology of desulfurization, and to the use of new tools that enable enzyme enhancement via DNA manipulation to influence both the rate and the substrate range of Dsz. Also, a clearer understanding of the unique desulfinase step in the pathway has begun to emerge.
View Article and Find Full Text PDF