Publications by authors named "Kevin A D'Amour"

These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3-12 months post-implant.

View Article and Find Full Text PDF

Unlabelled: The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%-80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs.

View Article and Find Full Text PDF

Embryonic development is characterized by dynamic changes in gene expression, yet the role of chromatin remodeling in these cellular transitions remains elusive. To address this question, we profiled the transcriptome and select chromatin modifications at defined stages during pancreatic endocrine differentiation of human embryonic stem cells. We identify removal of Polycomb group (PcG)-mediated repression on stage-specific genes as a key mechanism for the induction of developmental regulators.

View Article and Find Full Text PDF

Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors.

View Article and Find Full Text PDF

Using a flow cytometry-based screen of commercial antibodies, we have identified cell-surface markers for the separation of pancreatic cell types derived from human embryonic stem (hES) cells. We show enrichment of pancreatic endoderm cells using CD142 and of endocrine cells using CD200 and CD318. After transplantation into mice, enriched pancreatic endoderm cells give rise to all the pancreatic lineages, including functional insulin-producing cells, demonstrating that they are pancreatic progenitors.

View Article and Find Full Text PDF

Human parthenogenetic stem cells (hpSC) hold great promise as a source of pluripotent stem cells for cell-based transplantation therapy due to their ethical method of derivation as well as the enhanced capacity for immunomatching with significant segments of the human population. We report here the directed differentiation of hpSC to produce enriched populations of definitive endoderm. Moreover, we find that treatment of undifferentiated hpSC by trichostatin A (TSA) before applying the directed differentiation protocol significantly increases the proportion of definitive endoderm cells in the final population.

View Article and Find Full Text PDF

The potential of pluripotent human cells, such as human embryonic stem cells (hESCs) and induced pluripotent stem (iPS) cells, to differentiate into any adult cell type makes them ideally suited for the generation of various somatic cells and tissues in vitro. This remarkable differentiation capacity permits analyzing aspects of human embryonic development in the laboratory, as well as generating specialized adult human cells for screening drugs, and for replacing tissues damaged by injury or degenerative diseases, such as diabetes. Understanding and controlling the fundamental processes that drive the differentiation of specialized cells are the keys to the eventual application of this technology to patients.

View Article and Find Full Text PDF

To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate-tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as at a single-cell level.

View Article and Find Full Text PDF

Development of a cell therapy for diabetes would be greatly aided by a renewable supply of human beta-cells. Here we show that pancreatic endoderm derived from human embryonic stem (hES) cells efficiently generates glucose-responsive endocrine cells after implantation into mice. Upon glucose stimulation of the implanted mice, human insulin and C-peptide are detected in sera at levels similar to those of mice transplanted with approximately 3,000 human islets.

View Article and Find Full Text PDF

Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR).

View Article and Find Full Text PDF

Human ESCs (hESCs) respond to signals that determine their pluripotency, proliferation, survival, and differentiation status. In this report, we demonstrate that phosphatidylinositol 3-kinase (PI3K) antagonizes the ability of hESCs to differentiate in response to transforming growth factor beta family members such as Activin A and Nodal. Inhibition of PI3K signaling efficiently promotes differentiation of hESCs into mesendoderm and then definitive endoderm (DE) by allowing them to be specified by Activin/Nodal signals present in hESC cultures.

View Article and Find Full Text PDF

Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones.

View Article and Find Full Text PDF

The potential of human embryonic stem (hES) cells to differentiate into cell types of a variety of organs has generated much excitement over the possible use of hES cells in therapeutic applications. Of great interest are organs derived from definitive endoderm, such as the pancreas. We have focused on directing hES cells to the definitive endoderm lineage as this step is a prerequisite for efficient differentiation to mature endoderm derivatives.

View Article and Find Full Text PDF

Somatic stem cells have been claimed to possess an unexpectedly broad differentiation potential (referred to here as plasticity) that could be induced by exposing stem cells to the extracellular developmental signals of other lineages in mixed-cell cultures. Recently, this and other experimental evidence supporting the existence of stem-cell plasticity have been refuted because stem cells have been shown to adopt the functional features of other lineages by means of cell-fusion-mediated acquisition of lineage-specific determinants (chromosomal DNA) rather than by signal-mediated differentiation. In this study we co-cultured mouse neural stem cells (NSCs), which are committed to become neurons and glial cells, with human endothelial cells, which form the lining of blood vessels.

View Article and Find Full Text PDF

Choline acetyltransferase (ChAT), the enzyme that synthesizes the neurotransmitter acetylcholine (ACh), is thought to be present in kinetic excess in cholinergic neurons. The rate-limiting factor in ACh production is the provision of choline to ChAT. Cholinergic neurons are relatively unique in their expression of the choline transporter 1 (CHT1), which exhibits high-affinity for choline and catalyzes its uptake from the extracellular space to the neuron.

View Article and Find Full Text PDF

Stem cells (SCs) are functionally defined by their abilities to self-renew and generate differentiated cells. Although much effort has been focused on defining the common characteristics among various types of SCs, the genetic and functional differences between multipotent and pluripotent SCs have garnered less attention. We report a direct genetic and functional comparison of molecularly defined and clonally related populations of neural SCs (NSCs) and embryonic SCs (ESCs), using the Sox2 promoter for isolation of purified populations by fluorescence-activated cell sorting.

View Article and Find Full Text PDF

In this study we examined the developmental roles of acetylcholine (ACh) by establishing and analyzing mice lacking choline acetyltransferase (ChAT), the biosynthetic enzyme for ACh. As predicted, ChAT-deficient embryos lack both spontaneous and nerve-evoked postsynaptic potentials in muscle and die at birth. In mutant embryos, abnormally increased nerve branching occurs on contact with muscle, and hyperinnervation continues throughout subsequent prenatal development.

View Article and Find Full Text PDF