Publications by authors named "Kevan A C Martin"

The cat primary visual cortex (V1) is a cortical area for which we have one of the most detailed estimates of the connection 'weights' (expressed as number of synapses) between different neural populations in different layers (Binzegger et al in J Neurosci 24:8441-8453, 2004). Nevertheless, the majority of excitatory input sources to layer 6, the deepest layer in a local translaminar excitatory feedforward loop, was not accounted for by the known neuron types used to generate the quantitative Binzegger diagram. We aimed to fill this gap by using a retrograde tracer that would label neural cell bodies in and outside V1 that directly connect to layer 6 of V1.

View Article and Find Full Text PDF

Brain size scales with body weight, but a new study has discovered that key circuits in the visual cortex of one of the world's smallest primates, the mouse lemur, Microcebus murinus, are built at the same scale as their equivalents in larger-brained primates.

View Article and Find Full Text PDF

In 1986, electron microscopy was used to reconstruct by hand the entire nervous system of a roundworm, the nematode Caenorhabditis elegans. Since this landmark study, high-throughput electron-microscopic techniques have enabled reconstructions of much larger mammalian brain circuits at synaptic resolution. Nevertheless, it remains unknown how the structure of a synapse relates to its physiological transmission strength-a key limitation for inferring brain function from neuronal wiring diagrams.

View Article and Find Full Text PDF

Pyramidal cells in the superficial layers of the neocortex provide a major excitatory projection to layer 5, which contains the pyramidal cells that project to subcortical motor-related targets. Both structurally and functionally rather little is known about this interlaminar pathway, especially in higher mammals. Here, we made sparse ultrastructural reconstructions of the projection to layer 5 of three pyramidal neurons from layer 3 in cat V1 whose morphology, physiology, and synaptic connections with layers 2 and 3 were known.

View Article and Find Full Text PDF

Pyramidal cells in the superficial layers of neocortex of higher mammals form a lateral network of axon clusters known as the 'daisy' network. The role of these axon clusters remains speculative and we still lack a comprehensive quantitative description of the single neurons forming the daisy or their heterogeneity. We filled intracellularly 50 superficial layer pyramidal neurons in the cat primary visual cortex and reconstructed the axonal tree and their synaptic boutons in 3D.

View Article and Find Full Text PDF

The present study is the first to describe quantitatively the patterns of synaptic connections made by the patchy network of pyramidal cell axons in the superficial layers of cat V1 in relation to the orientation map. Intrinsic signal imaging of the orientation map was combined with 3D morphological reconstructions of physiologically-characterized neurons at light and electron microscope levels. A Similarity Index (SI) expressed the similarity of the orientation domain of a given bouton cluster to that of its parent dendritic tree.

View Article and Find Full Text PDF

The traditional classification of primary motor cortex (M1) as an agranular area has been challenged recently when a functional layer 4 (L4) was reported in M1. L4 is the principal target for thalamic input in sensory areas, which raises the question of how thalamocortical synapses formed in M1 in the mouse compare with those in neighboring sensory cortex (S1). We identified thalamic boutons by their immunoreactivity for the vesicular glutamate transporter 2 (VGluT2) and performed unbiased disector counts from electron micrographs.

View Article and Find Full Text PDF

The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking.

View Article and Find Full Text PDF

Unlabelled: Sensory neurons encode stimulus intensity in their instantaneous spike rate and adjust the set-points of the stimulus-response relationships by adaptation. In the visual cortex, adaptation is crucial because the mechanism of fast gain control (normalization) increases the contrast sensitivity of individual neurons at the cost of encoding a far narrower range of contrasts than is encountered in natural scenes. The mechanism of adaptation, however, is a slow process and has a time constant of seconds.

View Article and Find Full Text PDF

The axons of pyramidal neurons in the superficial layers of the neocortex of higher mammals form lateral networks of discrete clusters of synaptic boutons. In primary visual cortex the clusters are reported to link domains that share the same orientation preferences, but how individual neurons contribute to this network is unknown. Here we performed optical imaging to record the intrinsic signal, which is an indirect measure of neuronal firing, and determined the global map of orientation preferences in the cat primary visual system.

View Article and Find Full Text PDF

One of the hallmarks of neocortical circuits is the predominance of recurrent excitation between pyramidal neurons, which is balanced by recurrent inhibition from smooth GABAergic neurons. It has been previously described that in layer 2/3 of primary visual cortex (V1) of cat and monkey, pyramidal cells filled with horseradish peroxidase connect approximately in proportion to the spiny (excitatory, 95% and 81%, respectively) and smooth (GABAergic, 5% and 19%, respectively) dendrites found in the neuropil. By contrast, a recent ultrastructural study of V1 in a single mouse found that smooth neurons formed 51% of the targets of the superficial layer pyramidal cells.

View Article and Find Full Text PDF

Inside one voxel of a cubic millimeter of neocortex, fifty to hundred thousand neurons use 4 km of axonal cable to form three to fifteen hundred million synapses with each other. While in the human, such voxel is a small fragment of a cortical area, in the mouse an entire cortical area, like the primary auditory cortex, can be contained in a voxel of this size. This raises the fundamental question of what happens inside such a voxel? Are the circuits contained in this voxel, and their operations, different in every area, or are there general principles that are conserved across cortical areas and species? Such questions go to the heart of understanding how the neocortex wires itself and works.

View Article and Find Full Text PDF

Neurons in primary visual cortex of many mammals are clustered according to their preference to stimulus parameters such as orientation and spatial frequency. Nevertheless, responses to complex visual stimuli are highly heterogeneous between adjacent neurons. To investigate the relation between these observations, we recorded from pairs of neighboring neurons in area 17 of anesthetized cats in response to stimuli of differing complexity: sinusoidal drifting gratings, binary dense noise, and natural movies.

View Article and Find Full Text PDF

In common with other areas of the prefrontal cortex, activity in frontopolar area 10 is probably modulated by dopamine. We studied the dopaminergic innervation of monkey prefrontal area 10 by immunostaining with tyrosine hydroxylase (TH) antibodies. TH-positive axons in layer 3 were examined by electron microscopy of series of ultrathin sections.

View Article and Find Full Text PDF

Neurons of the same column in L4 of the cat visual cortex are likely to share the same sensory input from the same region of the visual field. Using visually-guided patch clamp recordings we investigated the biophysical properties of the synapses of neighboring layer 4 neurons. We recorded synaptic connections between all types of excitatory and inhibitory neurons in L4.

View Article and Find Full Text PDF

The frontal eye field (FEF) of the primate neocortex occupies a pivotal position in the matrix of inter-areal projections. In addition to its role in directing saccadic eye movements, it is the source of an attentional signal that modulates the activity of neurons in extrastriate and parietal cortex. Here, we tested the prediction that FEF preferentially excites inhibitory neurons in target areas during attentional modulation.

View Article and Find Full Text PDF

The mouse neocortex is now the focus of research using twenty-first century techniques of circuit analyses, which are revealing different wiring strategies for excitatory and inhibitory connections and providing important insights into the possible computations of cortical circuits.

View Article and Find Full Text PDF

In the cat's visual cortex, the responses of simple cells seem to be totally determined by their thalamic input, yet only a few percent of the excitatory synapses in layer 4 arise from the thalamus. To resolve this discrepancy between structure and function, we used correlated light and electron microscopy to search individual spiny stellate cells (simple cells) for possible structural features that would explain the biophysical efficacy of the thalamic input, such as synaptic location on dendrites, size of postsynaptic densities, and postsynaptic targets. We find that thalamic axons form a small number of synapses with the spiny stellates (188 on average), that the median size of the synapses is slightly larger than that of other synapses on the dendrites of spiny stellates, that they are not located particularly proximal to the soma, and that they do not cluster on the dendrites.

View Article and Find Full Text PDF

In 1873 Camillo Golgi discovered his eponymous stain, which he called la reazione nera. By adding to it the concepts of the Neuron Doctrine and the Law of Dynamic Polarisation, Santiago Ramon y Cajal was able to link the individual Golgi-stained neurons he saw down his microscope into circuits. This was revolutionary and we have all followed Cajal's winning strategy for over a century.

View Article and Find Full Text PDF

The claustrum is a subcortical structure reciprocally connected with most areas of neocortex. This strategic location suggests an integrative role of the claustrum across different sensory modalities. However, our knowledge of the synaptic relationship between the neocortex and the claustrum is basic.

View Article and Find Full Text PDF

Reading is a highly complex task involving a precise integration of vision, attention, saccadic eye movements, and high-level language processing. Although there is a long history of psychological research in reading, it is only recently that imaging studies have identified some neural correlates of reading. Thus, the underlying neural mechanisms of reading are not yet understood.

View Article and Find Full Text PDF

The cortical column has been an invaluable concept to explain the functional organization of the neocortex. While this idea was born out of experiments that cleverly combined electrophysiological recordings with anatomy, no one has 'seen' the anatomy of a column. All we know is that when we record through the cortex of primates, ungulates, and carnivores in a trajectory perpendicular to its surface there is a remarkable constancy in the receptive field properties of the neurons regarding one set of stimulus features.

View Article and Find Full Text PDF