Angew Chem Int Ed Engl
August 2017
The amplification- and enzyme-free quantification of DNA at ultralow concentrations, on the order of 10-1000 targets, is highly beneficial but extremely challenging. To address this challenge, true detection signals must be reliably discriminated from false or noise signals. Herein, we describe the development of associating and dissociating nanodimer analysis (ADNA) as a method that enables a maximum number of detection signals to be collected from true target-binding events while keeping nonspecific signals at a minimum level.
View Article and Find Full Text PDFNanoparticle tethering to lipid bilayers enables the observation of hundreds of diffusing particles that are confined within a single field of view. A wide variety of materials ranging from plasmonic metals to soft matter can be stably tethered to the surface of a fluid bilayer by covalent or non-covalent means. The controlled environment of this experimental platform allows direct control over surface compositions and accurate tracking of nanoparticle interactions.
View Article and Find Full Text PDFSupramolecular nanogel, a physically cross-linked nanosize hydrogel, spontaneously self-assembles in aqueous solution via secondary interactions and is thus of great interest in nanomedicine as a drug carrier. We developed a versatile method for supramolecular nanogel self-assembled by electrostatic interaction between positive surfactant micelles and negative polypeptides. Core-shell-like structures of supramolecular nanogels provide stable hydrophobic pockets that prevent simple diffusion of hydrophobic guest molecules, resulting in high encapsulation stability.
View Article and Find Full Text PDF