Publications by authors named "Keunsook Lee"

Candida albicans is a major fungal pathogen of humans. Although its genome has been sequenced more than two decades ago, there are still over 4300 uncharacterized C. albicans genes.

View Article and Find Full Text PDF

Echinocandins such as caspofungin are frontline antifungal drugs that compromise β-1,3 glucan synthesis in the cell wall. Recent reports have shown that fungal cells can resist killing by caspofungin by upregulation of chitin synthesis, thereby sustaining cell wall integrity (CWI). When echinocandins are removed, the chitin content of cells quickly returns to basal levels, suggesting that there is a fitness cost associated with having elevated levels of chitin in the cell wall.

View Article and Find Full Text PDF

The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER-resident protein, inositol-requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling.

View Article and Find Full Text PDF

Hypoxic adaptation pathways, essential for Candida albicans pathogenesis, are tied to its transition from a commensal to a pathogen. Herein, we identify a WW domain-containing protein, Ifu5, as a determinant of hypoxic adaptation that also impacts normoxic responses in this fungus. Ifu5 activity supports glycosylation homeostasis via the Cek1 mitogen-activated protein kinase-dependent up-regulation of PMT1, under normoxia.

View Article and Find Full Text PDF

Four spp. (, , , ) cause >95% of invasive infections. elicits immune responses via pathogen recognition receptors including C-type lectin-like receptors (CLRs).

View Article and Find Full Text PDF

The rise of widespread antifungal resistance fuels the need to explore new classes of inhibitory molecules as potential novel inhibitors. Recently a plant natural product poacic acid (PA) was shown to inhibit β-1,3-glucan synthesis, and to have antifungal activity against a range of plant pathogens and against . As with the echinocandins, such as caspofungin, PA targets the synthesis of cell wall β-1,3-glucan and has potential utility in the treatment of medically important fungi.

View Article and Find Full Text PDF

is a human fungal pathogen that often causes infections in immunocompromised individuals. Upon inhalation into the lungs differentiates into cells with altered size and morphology, including production of large titan cells. Titan cells possess thickened cell wall and dense, cross-linked capsule when compared to grown cells.

View Article and Find Full Text PDF

The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans.

View Article and Find Full Text PDF

is a human opportunist pathogen that can grow as yeast, pseudohyphae, or true hyphae and , depending on environmental conditions. Reversible cellular morphogenesis is an important virulence factor that facilitates invasion of host tissues, escape from phagocytes, and dissemination in the blood stream. The innate immune system is the first line of defense against infections and is influenced by recognition of wall components that vary in composition in different morphological forms.

View Article and Find Full Text PDF

Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing.

View Article and Find Full Text PDF

Unlabelled: The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity.

View Article and Find Full Text PDF

Treatment of Aspergillus fumigatus with echinocandins such as caspofungin inhibits the synthesis of cell wall β-1,3-glucan, which triggers a compensatory stimulation of chitin synthesis. Activation of chitin synthesis can occur in response to sub-MICs of caspofungin and to CaCl2 and calcofluor white (CFW), agonists of the protein kinase C (PKC), and Ca(2+)-calcineurin signaling pathways. A.

View Article and Find Full Text PDF

Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome) for genes affecting biofilm development in mixed-population experiments.

View Article and Find Full Text PDF

In addition to the bio-guided investigation of the antifungal activity of Plinia cauliflora leaves against different Candida species, the major aim of the present study was the search for targets on the fungal cell. The most active antifungal fraction was purified by chromatography and characterized by NMR and mass spectrometry. The antifungal activity was evaluated against five Candida strains according to referenced guidelines.

View Article and Find Full Text PDF

The N-linked glycosylation is a ubiquitous protein modification in eukaryotic cells. During the N-linked glycan synthesis, the precursor Glc(3)Man(9)GlcNAc(2) is processed by endoplasmic reticulum (ER) glucosidases I, II and α1,2-mannosidase, before transporting to the Golgi complex for further structure modifications. In fungi of medical relevance, as Candida albicans and Aspergillus, it is well known that ER glycosidases are important for cell fitness, cell wall organization, virulence, and interaction with the immune system.

View Article and Find Full Text PDF

Candida albicans cells with increased cell wall chitin have reduced echinocandin susceptibility in vitro. The aim of this study was to investigate whether C. albicans cells with elevated chitin levels have reduced echinocandin susceptibility in vivo.

View Article and Find Full Text PDF

Hyphae of the dimorphic fungus, Candida albicans, exhibit directional tip responses when grown in contact with surfaces. On hard surfaces or in liquid media, the trajectory of hyphal growth is typically linear, with tip re-orientation events limited to encounters with topographical features (thigmotropism). In contrast, when grown on semisolid surfaces, the tips of C.

View Article and Find Full Text PDF

A gene (astA) encoding arylsulfate sulfotransferase (ASST), which transfers a sulfate group from phenolic sulfate esters to phenolic acceptors, was cloned from a Eubacterium A-44 genomic library. The probe (1.5 kb fragment) for the astA gene was prepared from the PCR product of the primers produced using two internal amino acid sequences of ASST, which had been purified from Eubacterium A-44.

View Article and Find Full Text PDF