Publications by authors named "Keunhwan Park"

Soft systems that respond to external stimuli, such as heat, magnetic field, and light, find applications in a range of fields including soft robotics, energy harvesting, and biomedicine. However, most of the existing systems exhibit nondirectional, nastic movement as they can neither grow nor sense the direction of stimuli. In this regard, artificial systems are outperformed by organisms capable of directional growth in response to the sense of stimuli or tropic growth.

View Article and Find Full Text PDF

Shaping a plant root into an ideal structure for water capture is increasingly important for sustainable agriculture in the era of global climate change. Although the current genetic engineering of crops favours deep-reaching roots, here we show that nature has apparently adopted a different strategy of shaping roots. We construct a mathematical model for optimal root length distribution by considering that plants seek maximal water uptake at the metabolic expenses of root growth.

View Article and Find Full Text PDF

In plants, plasmodesmata (PD) are nanopores that serve as channels for molecular cell-to-cell transport. Precise control of PD permeability is essential to regulate processes such as growth and tissue patterning, photoassimilate distribution and defense against pathogens. Callose deposition modulates PD transport but little is known of the rapid events that lead to PD closure in response to tissue damage or osmotic shock.

View Article and Find Full Text PDF

In the airway network of a human lung, the airway diameter gradually decreases through multiple branching. The diameter reduction ratio of the conducting airways that transport gases without gas exchange is 0.79, but this reduction ratio changes to 0.

View Article and Find Full Text PDF

Microrobots that are light and agile yet require no artificial power input can be widely used in medical, military, and industrial applications. As an actuation system to drive such robots, here we report a biologically inspired bilayer structure that harnesses the environmental humidity energy, with ratchets to rectify the motion. We named this actuator-ratchet system the hygrobot.

View Article and Find Full Text PDF

Fish respire through gills, which have evolved to extract aqueous oxygen. Fish gills consist of filaments with well-ordered lamellar structures, which play a role in maximizing oxygen diffusion. It is interesting that when we anatomically observe the gills of various fish species, gill interlamellar distances (d) vary little among them, despite large variations in body mass (Mb).

View Article and Find Full Text PDF

Although ultrasonic technology has been successfully adopted for semiconductor cleaning, a recent trend of extreme miniaturization of patterns calls for a novel process that can remove contaminant particles without damaging nanoscale patterns. Unstable bubble oscillations have been hypothesized to cause such surface damages, and here we show direct visualization results that a high acoustic pressure induces bubble instability leading to pattern damages. As a remedy for the conventional ultrasonic cleaning scheme, we introduce a novel cleaning system using dual transducers, in which one transducer generates bubbles with a high acoustic pressure in an acoustically isolated sub-chamber and the other drives the oscillation of bubbles around the cleaning area at a low acoustic pressure.

View Article and Find Full Text PDF