Ultrahigh-resolution patterning with high-throughput and high-fidelity is highly in demand for expanding the potential of organic light-emitting diodes (OLEDs) from mobile and TV displays into near-to-eye microdisplays. However, current patterning techniques so far suffer from low resolution, consecutive pattern for RGB pixelation, low pattern fidelity, and throughput issue. Here, we present a silicone engineered anisotropic lithography of the organic light-emitting semiconductor (OLES) that in-situ forms a non-volatile etch-blocking layer during reactive ion etching.
View Article and Find Full Text PDFA universal method that enables utilization of conventional photolithography for processing a variety of polymer semiconductors is developed. The method relies on imparting chemical and physical orthogonality to a polymer film via formation of a semi-interpenetrating diphasic polymer network with a bridged polysilsesquioxane structure, which is termed an orthogonal polymer semiconductor gel. The synthesized gel films remain tolerant to various chemical and physical etching processes involved in photolithography, thereby facilitating fabrication of high-resolution patterns of polymer semiconductors.
View Article and Find Full Text PDF