Publications by authors named "Keun-Il Kim"

Article Synopsis
  • * Research shows that USF2, in conjunction with HDAC1, represses lysosomal and autophagy genes when nutrients are abundant by altering histone modifications and chromatin structure.
  • * Under starvation, USF2 competes with TFEB to control gene expression related to lysosomes, and findings suggest that targeting USF2 could be beneficial for treating diseases linked to protein aggregation, like α1-antitrypsin deficiency.
View Article and Find Full Text PDF

Solid-state electrolytes (SSEs) are challenged by complex interfacial chemistry and poor ion transport through the interfaces they form with battery electrodes. Here, we investigate a class of SSE composed of micrometer-sized lithium oxide (LiO) particles dispersed in a polymerizable 1,3-dioxolane (DOL) liquid. Ring-opening polymerization (ROP) of the DOL by Lewis acid salts inside a battery cell produces polymer-inorganic hybrid electrolytes with gradient properties on both the particle and battery cell length scales.

View Article and Find Full Text PDF

The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown.

View Article and Find Full Text PDF

The aim of the present study was to evaluate the effect of ETS homologous factor (EHF) in malignant breast cancer cells. The overexpression and knockdown of the EHF gene in human and mouse breast cancer cells were performed, and the TCGA dataset and Q-omics were analyzed. We found that the tumor suppressor NDRG2 is correlated with EHF gene expression in triple-negative breast cancer cells, that EHF overexpression results in reduced cell proliferation and that apoptosis is promoted by the chemotherapeutic reagent treatment of EHF-overexpressing cells.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved catabolic process that is induced in response to various stress factors in order to protect cells and maintain cellular homeostasis by degrading redundant components and dysfunctional organelles. Dysregulation of autophagy has been implicated in several conditions such as cancer, neurodegenerative diseases, and metabolic disorders. Although autophagy has been commonly considered as a cytoplasmic process, accumulating evidence has revealed that epigenetic regulation within the nucleus is also important for regulation of autophagy.

View Article and Find Full Text PDF

Cells activate protective mechanisms to overcome stressful conditions that threaten cellular homeostasis, including imbalances in calcium, redox, and nutrient levels. Endoplasmic reticulum (ER) stress activates an intracellular signaling pathway, known as the unfolded protein response (UPR), to mitigate such circumstances and protect cells. Although ER stress is sometimes a negative regulator of autophagy, UPR induced by ER stress typically activates autophagy, a self-degradative pathway that further supports its cytoprotective role.

View Article and Find Full Text PDF

Retinoic acid receptor-related orphan receptor α (RORα) plays a vital role in various physiological processes, including metabolism, cancer, circadian rhythm, cerebellar development, and inflammation. Although RORα is expressed in the skin, its role in skin physiology remains poorly elucidated. Herein, Rorα was expressed in the basal and suprabasal layers of the epidermis; however, keratinocyte-specific Rorα deletion did not impact normal epidermal formation.

View Article and Find Full Text PDF

Autophagy is a catabolic pathway that maintains cellular homeostasis under various stress conditions, including conditions of nutrient deprivation. To elevate autophagic flux to a sufficient level under stress conditions, transcriptional activation of autophagy genes occurs to replenish autophagy components. Thus, the transcriptional and epigenetic control of the genes regulating autophagy is essential for cellular homeostasis.

View Article and Find Full Text PDF

Autophagy modulators are considered putative therapeutic targets because of the role of autophagy in cancer progression. Kazinol C, a 1,3-diphenylpropane from the plant , has been shown to induce apoptosis in colon cancer cells through the activation of AMPK at high concentrations. In the present study, we found that Kazinol C induced autophagy through endoplasmic reticulum stress-mediated unfolded protein response signaling in several normal and cancer cell lines at low concentrations of Kazinol C that did not induce apoptosis.

View Article and Find Full Text PDF

A full cell chemistry of aqueous dual-ion battery (DIB) was reported, comprising the graphite cathode and 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) as the anode. This DIB employed a mixture aqueous electrolyte: 5 m tributylmethylammonium (TBMA) chloride plus 5 m MgCl , where [MgCl ] and TBMA serve as the charge carriers for cathode and anode of the DIB, respectively. This novel full cell exhibited a specific capacity of around 41 mAh g based on the total active mass of both electrodes with an average operation voltage of 1.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1) is an epigenetic regulator that modulates the chromatin status, contributing to gene activation or repression. The post-translational modification of LSD1 is critical for the regulation of many of its biological processes. Phosphorylation of serine 112 of LSD1 by protein kinase C alpha (PKCα) is crucial for regulating inflammation, but its physiological significance is not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Lung diseases, such as pulmonary hypertension and pulmonary fibrosis, are life-threatening diseases and have common features of vascular remodeling. During progression, extracellular matrix protein deposition and dysregulation of proteolytic enzymes occurs, which results in vascular stiffness and dysfunction. Although vasodilators or anti-fibrotic therapy have been mainly used as therapy owing to these characteristics, their effectiveness does not meet expectations.

View Article and Find Full Text PDF

Oxidative anion insertion into graphite in an aqueous environment represents a significant challenge in the construction of aqueous dual-ion batteries. In dilute aqueous electrolytes, the oxygen evolution reaction (OER) dominates the anodic current before anions can be inserted into the graphite gallery. Herein, we report that the reversible insertion of Mg-Cl superhalides in graphite delivers a record-high reversible capacity of 150 mAh g from an aqueous deep eutectic solvent comprising magnesium chloride and choline chloride.

View Article and Find Full Text PDF

Pontin, a member of the AAA+ ATPase family, plays important roles in a variety of cellular processes, including transcription regulation, DNA damage response, telomerase activity, and cellular transformation. In the previous studies, Pontin deletion in mice was lethal to embryos. Here, we demonstrate that the depletion of Pontin induced cellular senescence in mouse and human fibroblasts as well as in mouse epidermal keratinocytes.

View Article and Find Full Text PDF

Inflammatory Bowel Disease is caused by an acute or chronic dysfunction of the mucosal inflammatory system in the intestinal tract. In line with the results of our previous study, wherein we found that the PKCα-LSD1-NF-κB signaling plays a critical role in the prolonged activation of the inflammatory response, we aimed to investigate the effect of signaling on colitis in the present study. Lsd1 S112A knock-in (Lsd1SA/SA) mice, harboring a deficiency in phosphorylation by PKCα, exhibited less severe colitis symptoms and a relatively intact colonic epithelial lining in dextran sulfate sodium (DSS)- induced colitis models.

View Article and Find Full Text PDF

Relationship between autophagy and endoplasmic reticulum (ER) stress and their application to treat cancer have been actively studied these days. Recently, a lignan [(-)-(2R, 3R)-1,4-O-diferuloylsecoisolariciresinol, DFS] from Alnus japonica has been found to reduce the viability of colon cancer cells. In this study, we have observed DFS-induced autophagy in a variety of cancer cell lines.

View Article and Find Full Text PDF

Unc-51-like-kinase 1 (ULK1) is a target of both the mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), whose role is to facilitate the initiation of autophagy in response to starvation. Upon glucose starvation, dissociation of mTOR from ULK1 and phosphorylation by AMPK leads to the activation of ULK1 activity. Here, we provide evidence that ULK1 is the attachment of O-linked N-acetylglucosamine (O-GlcNAcylated) on the threonine 754 site by O-linked N-acetylglucosamine transferase (OGT) upon glucose starvation.

View Article and Find Full Text PDF

has traditionally been used to treat various medical problems. In this report, we introduce cis-khellactone as a new anti-cancer agent, which was isolated from the chloroform soluble fraction of the rhizomes of . Its anti-cancerous effect was at first tested in MCF7 and MDA-MB-231 breast cell lines, in which MCF7 is well known to be resistant to many anti-cancer drugs; MCF10A normal breast cell line was used as a control.

View Article and Find Full Text PDF

Mis18α, a component of Mis18 complex comprising of Mis18α, Mis18β, and M18BP1, is known to localize at the centromere from late telophase to early G1 phase and plays a priming role in CENP-A deposition. Although its role in CENP-A deposition is well established, the other function of Mis18α remains unknown. Here, we elucidate a new function of Mis18α that is critical for the proper progression of cell cycle independent of its role in CENP-A deposition.

View Article and Find Full Text PDF

The inflammatory response mediated by nuclear factor κB (NF-κB) signaling is essential for host defense against pathogens. Although the regulatory mechanism of NF-κB signaling has been well studied, the molecular basis for epigenetic regulation of the inflammatory response is poorly understood. Here we identify a new signaling axis of PKCα-LSD1-NF-κB, which is critical for activation and amplification of the inflammatory response.

View Article and Find Full Text PDF

Retinoic acid-related orphan receptor α (RORα) regulates diverse physiological processes, including inflammatory responses, lipid metabolism, circadian rhythm, and cancer biology. RORα has four different isoforms which have distinct N-terminal domains but share identical DNA binding domain and ligand binding domain in human. However, lack of specific antibody against each RORα isoform makes biochemical studies on each RORα isoform remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • RORα is a key protein that helps control important functions in our bodies like brain development and how we process fats.
  • When this protein is missing in the liver, it can cause problems like fatty liver, obesity, and trouble using insulin, especially when eating a lot of fatty foods.
  • Scientists found that RORα works by stopping another protein, PPARγ, from doing its job with fats, and improving RORα's function could help treat conditions connected to weight and metabolism issues.
View Article and Find Full Text PDF