Publications by authors named "Keun-Chang Kwak"

This paper is concerned with individual identification by late fusion of two-stream deep networks from Electromyogram (EMG) signals. EMG signal has more advantages on security compared to other biosignals exposed visually, such as the face, iris, and fingerprints, when used for biometrics, at least in the aspect of visual exposure, because it is measured through contact without any visual exposure. Thus, we propose an ensemble deep learning model by late information fusion of convolutional neural networks (CNN) and long short-term memory (LSTM) from EMG signals for robust and discriminative biometrics.

View Article and Find Full Text PDF

Behavior recognition has applications in automatic crime monitoring, automatic sports video analysis, and context awareness of so-called silver robots. In this study, we employ deep learning to recognize behavior based on body and hand-object interaction regions of interest (ROIs). We propose an ROI-based four-stream ensemble convolutional neural network (CNN).

View Article and Find Full Text PDF

This paper conducts a comparative analysis of deep models in biometrics using scalogram of electrocardiogram (ECG). A scalogram is the absolute value of the continuous wavelet transform coefficients of a signal. Since biometrics using ECG signals are sensitive to noise, studies have been conducted by transforming signals into a frequency domain that is efficient for analyzing noisy signals.

View Article and Find Full Text PDF

We herein propose an EigenECG Network (EECGNet) based on the principal component analysis network (PCANet) for the personal identification of electrocardiogram (ECG) from human biosignal data. The EECGNet consists of three stages. In the first stage, ECG signals are preprocessed by normalization and spike removal.

View Article and Find Full Text PDF

This paper discusses the classification of horse gaits for self-coaching using an ensemble stacked auto-encoder (ESAE) based on wavelet packets from the motion data of the horse rider. For this purpose, we built an ESAE and used probability values at the end of the softmax classifier. First, we initialized variables such as hidden nodes, weight, and max epoch using the options of the auto-encoder (AE).

View Article and Find Full Text PDF

Zerumbone (ZER), an active constituent of the Zingiberaceae family, has been shown to exhibit several biological activities, such as anti-inflammatory, anti-allergic, anti-microbial, and anti-cancer; however, it has not been studied for anti-melanogenic properties. In the present study, we demonstrate that ZER and (ZO) extract significantly attenuate melanin accumulation in α-melanocyte-stimulating hormone (α-MSH)-stimulated mouse melanogenic B16F10 cells. Further, to elucidate the molecular mechanism by which ZER suppresses melanin accumulation, we analyzed the expression of melanogenesis-associated transcription factor, microphthalmia-associated transcription factor (MITF), and its target genes, such as , (), and (), in B16F10 cells that are stimulated by α-MSH.

View Article and Find Full Text PDF

In this study, we design an intelligent model to predict chlorophyll-a concentration, which is the primary indicator of algal blooms, using extreme learning machine (ELM) models. Modeling algal blooms is important for environmental management and ecological risk assessment. For this purpose, the performance of the designed models was evaluated for four artificial weirs in the Nakdong River, Korea.

View Article and Find Full Text PDF

This paper suggests a method of classifying Korean pop (K-pop) dances based on human skeletal motion data obtained from a Kinect sensor in a motion-capture studio environment. In order to accomplish this, we construct a K-pop dance database with a total of 800 dance-movement data points including 200 dance types produced by four professional dancers, from skeletal joint data obtained by a Kinect sensor. Our classification of movements consists of three main steps.

View Article and Find Full Text PDF

This paper is concerned with the design of an Incremental Radial Basis Function Network (IRBFN) by combining Linear Regression (LR) and local RBFN for the prediction of heating load and cooling load in residential buildings. Here the proposed IRBFN is designed by building a collection of information granules through Context-based Fuzzy C-Means (CFCM) clustering algorithm that is guided by the distribution of error of the linear part of the LR model. After adopting a construct of a LR as global model, refine it through local RBFN that captures remaining and more localized nonlinearities of the system to be considered.

View Article and Find Full Text PDF

Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN) for estimating the energy expenditure.

View Article and Find Full Text PDF

In this study, we classify four horse gaits (walk, sitting trot, rising trot, canter) of three breeds of horse (Jeju, Warmblood, and Thoroughbred) using a neuro-fuzzy classifier (NFC) of the Takagi-Sugeno-Kang (TSK) type from data information transformed by a wavelet packet (WP). The design of the NFC is accomplished by using a fuzzy c-means (FCM) clustering algorithm that can solve the problem of dimensionality increase due to the flexible scatter partitioning. For this purpose, we use the rider's hip motion from the sensor information collected by inertial sensors as feature data for the classification of a horse's gaits.

View Article and Find Full Text PDF

This paper is concerned with an intelligent predictor of energy expenditure (EE) using a developed patch-type sensor module for wireless monitoring of heart rate (HR) and movement index (MI). For this purpose, an intelligent predictor is designed by an advanced linguistic model (LM) with interval prediction based on fuzzy granulation that can be realized by context-based fuzzy c-means (CFCM) clustering. The system components consist of a sensor board, the rubber case, and the communication module with built-in analysis algorithm.

View Article and Find Full Text PDF

In this study, we are concerned with a method for constructing quantum-based adaptive neuro-fuzzy networks (QANFNs) with a Takagi-Sugeno-Kang (TSK) fuzzy type based on the fuzzy granulation from a given input-output data set. For this purpose, we developed a systematic approach in producing automatic fuzzy rules based on fuzzy subtractive quantum clustering. This clustering technique is not only an extension of ideas inherent to scale-space and support-vector clustering but also represents an effective prototype that exhibits certain characteristics of the target system to be modeled from the fuzzy subtractive method.

View Article and Find Full Text PDF

This paper is concerned with an enhanced independent component analysis (ICA) and its application to face recognition. Typically, face representations obtained by ICA involve unsupervised learning and high-order statistics. In this paper, we develop an enhancement of the generic ICA by augmenting this method by the Fisher linear discriminant analysis (LDA); hence, its abbreviation, FICA.

View Article and Find Full Text PDF

In this paper, we develop a method for recognizing face images by combining wavelet decomposition, Fisherface method, and fuzzy integral. The proposed approach is comprised of four main stages. The first stage uses the wavelet decomposition that helps extract intrinsic features of face images.

View Article and Find Full Text PDF