Background: Depression and memory loss are prevalent neurodegenerative disorders, with diabetic patients facing an elevated risk of brain dysfunction. Methylglyoxal (MGO) formation, which is heightened in diabetes owing to hyperglycemia and gut dysbiosis, may serve as a critical link between diabetes and brain diseases. Despite the high prevalence of MGO, the precise mechanisms underlying MGO-induced depression and memory loss remain unclear.
View Article and Find Full Text PDFHigh-frequency noise exceeding 1 kHz has emerged as a pressing public health issue in industrial and occupational settings. In response to this challenge, the present study explores the development of a graphene oxide-polyethyleneimine (GO-PEI) foam (GPF) featuring a hierarchically porous structure. The synthesis and optimization of GPF were carried out using a range of analytical techniques, including Raman spectroscopy, scanning electron microscopy (SEM), Braunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD.
View Article and Find Full Text PDFA form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans.
View Article and Find Full Text PDFStroke is a major global health problem that causes significant mortality and long-term disability. Post-stroke neurological impairment is a complication that is often underestimated with the risk of persistent neurological deficits. Although traditional Chinese medicines have a long history of being used for stroke, their scientific efficacy remains unclear.
View Article and Find Full Text PDFAlzheimer's disease (AD) is one representative dementia characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain, resulting in cognitive decline and memory loss. AD is associated with neuropsychiatric symptoms, including major depressive disorder (MDD). Recent studies showed a reduction in mGluR5 expression in the brains of stress-induced mice models and individuals with MDD compared to controls.
View Article and Find Full Text PDFBlood biomarkers have been considered tools for the diagnosis, prognosis, and monitoring of Alzheimer's disease (AD). Although amyloid-β peptide (Aβ) and tau are primarily blood biomarkers, recent studies have identified other reliable candidates that can serve as measurable indicators of pathological conditions. One such candidate is the glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein that can be detected in blood samples.
View Article and Find Full Text PDF(SM) has been used in oriental medicine for its neuroprotective effects against cardiovascular diseases and ischemic stroke. In this study, we investigated the therapeutic mechanism underlying the effects of SM on stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Our results showed that SM administration significantly attenuated acute brain injury, including brain infarction and neurological deficits, 3 days after tMCAO.
View Article and Find Full Text PDFThis study aimed to investigate morphological and metabolic changes in the brains of 5xFAD mice. Structural magnetic resonance imaging (MRI) and H magnetic resonance spectroscopy (MRS) were obtained in 10- and 14-month-old 5xFAD and wild-type (WT) mice, while P MRS scans were acquired in 11-month-old mice. Significantly reduced gray matter (GM) was identified by voxel-based morphometry (VBM) in the thalamus, hypothalamus, and periaqueductal gray areas of 5xFAD mice compared to WT mice.
View Article and Find Full Text PDFMagnetic resonance spectroscopy (MRS) is a noninvasive technique for measuring metabolite concentration. It can be used for preclinical small animal brain studies using rodents to provide information about neurodegenerative diseases and metabolic disorders. However, data acquisition from small volumes in a limited scan time is technically challenging due to its inherently low sensitivity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a form of dementia associated with abnormal glucose metabolism resulting from amyloid-beta (Aβ) plaques and intracellular neurofibrillary tau protein tangles. In a previous study, we confirmed that carboxy-dehydroevodiamine∙HCl (cx-DHED), a derivative of DHED, was effective at improving cognitive impairment and reducing phosphorylated tau levels and synaptic loss in an AD mouse model. However, the specific mechanism of action of cx-DHED is unclear.
View Article and Find Full Text PDFThe key to current Alzheimer's disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-β (Aβ), total-tau (T-tau), and phosphorylated tau (P-tau).
View Article and Find Full Text PDFAlzheimer's disease is associated with various brain dysfunctions, including memory impairment, neuronal loss, astrocyte activation, amyloid-β plaques, and neurofibrillary tangles. Transgenic animal models of Alzheimer's disease have proven to be invaluable for the basic research of Alzheimer's disease. However, Alzheimer's disease mouse models developed so far do not fully recapitulate the pathological and behavioral features reminiscent of Alzheimer's disease in humans.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFT). Amyloid beta (Aβ) and tau imaging are widely used for diagnosing and monitoring AD in clinical settings. We evaluated the pathology of a recently developed 6 × Tg - AD (6 × Tg) mouse model by crossbreeding 5 × FAD mice with mice expressing mutant (P301L) tau protein using micro-positron emission tomography (PET) image analysis.
View Article and Find Full Text PDFRecently, several abnormally regulated microRNAs (miRNAs) have been identified in patients with Alzheimer's disease (AD). The purpose of this study was to identify abnormally expressed miRNAs and to investigate whether they affect pathological changes in AD in the 5xFAD AD mouse model. Using microarray analysis and RT-qPCR, miRNA expression in the hippocampus of a 4-month-old 5xFAD mouse model of AD was investigated.
View Article and Find Full Text PDFBackground: Metabotropic glutamate receptor 5 (mGluR5) has been implicated in stress-related psychiatric disorders, particularly major depressive disorder. Although growing evidence supports the proresilient role of mGluR5 in corticolimbic circuitry in the depressive-like behaviors following chronic stress exposure, the underlying neural mechanisms, including circuits and molecules, remain unknown.
Methods: We measured the c-Fos expression and probability of neurotransmitter release in and from basolateral amygdala (BLA) neurons projecting to the medial prefrontal cortex (mPFC) and to the ventral hippocampus (vHPC) after chronic social defeat stress.
Stroke is a primary debilitating disease in adults, occurring in 15 million individuals each year and causing high mortality and disability rates. The latest estimate revealed that stroke is currently the second leading cause of death worldwide. Post-stroke cognitive impairment (PSCI), one of the major complications after stroke, is frequently underdiagnosed.
View Article and Find Full Text PDFAdiponectin is an adipokine that mediates cellular cholesterol efflux and plays important roles in neuroinflammatory processes. In this study, we undertook positron emission tomography (PET) with the translocator protein (TSPO) ligand [C]PK11195 and measured serum adiponectin levels in groups of treatment-naïve young adult patients with major depressive disorder (MDD) and matched healthy controls. Thirty treatment-naïve MDD patients (median age: 24 years) and twenty-three healthy controls underwent [C]PK11195 PET.
View Article and Find Full Text PDFBackground And Purpose: Recently, isoflavone derivatives have been shown to have neuroprotective effects against neurological disorders. For instance, genistein attenuated the neuroinflammation and amyloid-β accumulation in Alzheimer's disease animal models, suggesting the potential for use to prevent and treat Alzheimer's disease.
Experimental Approach: Here, 50 compounds, including isoflavone derivatives, were constructed and screened for the inhibitory effects on amyloid-β fibrilization and oligomerization using the high-throughput screening formats of thioflavin T assay and multimer detection system, respectively.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline or dementia, the number of patients with AD is continuously increasing. Although a lot of great progress has been made in research and development of AD therapeutics, there is no fundamental cure for this disease yet. This study demonstrated the memory-improving effects of Cuban policosanol (PCO) in 5xFAD mice, which is an animal model of AD.
View Article and Find Full Text PDFAlzheimer's disease (AD), a progressive neurodegenerative disease, affects approximately 50 million people worldwide, which warrants the search for reliable new biomarkers for early diagnosis of AD. Brain-derived exosomal (BDE) proteins, which are extracellular nanovesicles released by all cell lineages of the central nervous system, have been focused as biomarkers for diagnosis, screening, prognosis prediction, and monitoring in AD. This review focused on the possibility of BDE proteins as AD biomarkers.
View Article and Find Full Text PDFThe number of patients with major depressive disorder (MDD) is increasing worldwide. In particular, the early onset of MDD from adolescence to young adulthood is more problematic than the later onset. The specific and expeditious identification of MDD before the occurrence of severe symptoms is significant for future interventions or therapies; however, there is no accurate diagnostic marker that has sufficient sensitivity and specificity for clinical use.
View Article and Find Full Text PDFAlzheimer's disease (AD) is mainly characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFTs). While the recent 5xFAD AD mouse model exhibits many AD-related phenotypes and a relatively early and aggressive amyloid β production, it does not show NFTs. Here, we developed and evaluated a novel AD mouse model (6xTg-AD, 6xTg) by crossbreeding 5xFAD mice with mice expressing mutant (P301L) tau protein (MAPT).
View Article and Find Full Text PDF