Publications by authors named "Keun Wook Shin"

The structure of graphene grown in chemical vapor deposition (CVD) is sensitive to the growth condition, particularly the substrate. The conventional growth of high-quality graphene via the Cu-catalyzed cracking of hydrocarbon species has been extensively studied; however, the direct growth on noncatalytic substrates, for practical applications of graphene such as current Si technologies, remains unexplored. In this study, nanocrystalline graphene (nc-G) spirals are produced on noncatalytic substrates by inductively coupled plasma CVD.

View Article and Find Full Text PDF

For practical device applications, monolayer transition metal dichalcogenide (TMD) films must meet key industry needs for batch processing, including the high-throughput, large-scale production of high-quality, spatially uniform materials, and reliable integration into devices. Here, high-throughput growth, completed in 12 min, of 6-inch wafer-scale monolayer MoS and WS is reported, which is directly compatible with scalable batch processing and device integration. Specifically, a pulsed metal-organic chemical vapor deposition process is developed, where periodic interruption of the precursor supply drives vertical Ostwald ripening, which prevents secondary nucleation despite high precursor concentrations.

View Article and Find Full Text PDF

Metal-semiconductor junctions are indispensable in semiconductor devices, but they have recently become a major limiting factor precluding device performance improvement. Here, we report the modification of a metal/n-type Si Schottky contact barrier by the introduction of two-dimensional (2D) materials of either graphene or hexagonal boron nitride (h-BN) at the interface. We realized the lowest specific contact resistivities (ρ) of 3.

View Article and Find Full Text PDF

Flexible and stretchable optoelectronic devices can be potentially applied in displays, biosensors, biomedicine, robotics, and energy generation. The use of nanomaterials with superior optical properties such as quantum dots (QDs) is important in the realization of wearable displays and biomedical devices, but specific structural design as well as selection of materials should preferentially accompany this technology to realize stretchable forms of these devices. Here, we report stretchable optoelectronic sensors manufactured using colloidal QDs and integrated with elastomeric substrates, whose optoelectronic properties are stable under various deformations.

View Article and Find Full Text PDF