Publications by authors named "Keun Koo Shin"

Background: Bone marrow-derived mesenchymal stem cells (BMSCs) and bone morphogenetic protein-2 (BMP-2) have been studied for bone repair because they have regenerative potential to differentiate into osteoblasts. The development of injectable and in situ three-dimensional (3D) scaffolds to proliferate and differentiate BMSCs and deliver BMP-2 is a crucial technology in BMSC-based tissue engineering.

Methods: The proliferation of mouse BMSCs (mBMSCs) in collagen/poly-γ-glutamic acid (Col/γ-PGA) hydrogel was evaluated using LIVE/DEAD and acridine orange and propidium iodide assays.

View Article and Find Full Text PDF

The non-viral delivery of genes into macrophages, known as hard-to-transfect cells, is a challenge. In this study, the microporation of a CpG-free and small plasmid (pCGfd-GFP) showed high transfection efficiency, sustainable transgene expression, and good cell viability in the transfections of Raw 264.7 and primary bone marrow-derived macrophages.

View Article and Find Full Text PDF

Many therapeutic enzymes for lysosomal storage diseases require a high content of mannose-6-phosphate (M6P) glycan, which is important for cellular uptake and lysosomal targeting. We constructed glyco-engineered yeast harboring a high content of mannosylphosphorylated glycans, which can be converted to M6P glycans by uncapping of the outer mannose residue. In this study, the cell wall of this yeast was employed as a natural M6P glycan source for conjugation to therapeutic enzymes.

View Article and Find Full Text PDF

Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S.

View Article and Find Full Text PDF

Genetic engineering approaches to improve the therapeutic potential of mesenchymal stem cells (MSCs) have been made by viral and non-viral gene delivery methods. Viral methods have severe limitations in clinical application because of potential oncogenic, pathogenic, and immunogenic risks, while non-viral methods have suffered from low transfection efficiency and transient weak expression as MSCs are hard-to-transfect cells. In this study, minicircle, which is a minimal expression vector free of bacterial sequences, was employed for MSC transfection as a non-viral gene delivery method.

View Article and Find Full Text PDF

This study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14.

View Article and Find Full Text PDF

Tumor necrosis factor-α (TNF-α) has multiple effects on proliferation and differentiation of human mesenchymal stem cells. Transforming growth factor-activated kinase-1 (TAK1) mediates the activation of nuclear factor-kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and p38 pathways in response to TNF-α. However, the role of TAK1 in TNF-α-induced effects in human adipose-derived stem cells (hADSCs) and its signaling pathway has not been clearly defined.

View Article and Find Full Text PDF

Background/aims: Demonstrating the molecular mechanisms of human adipose tissue-derived mesenchymal stem cells (hADSCs) differentiation and proliferation could develop hADSCs-based cell therapy.

Methods: The microRNA-137 (miR-137) and cell division control protein 42 homolog (CDC42) levels were regulated by oligonucleotides transfection. The adipogenic differentiation was induced for 10 days in an adipogenic medium and assessed by using an Oil Red O stain.

View Article and Find Full Text PDF

Porous hydroxyapatite (HAp)/chitosan-alginate composite scaffolds were prepared through in situ co-precipitation and freeze-drying for bone tissue engineering. The composite scaffolds were highly porous and interconnected with a pore size of around 50-220 μm at low concentrations of HAp. As the HAp content increased, the porosity of the scaffolds decreased from 84.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice.

View Article and Find Full Text PDF

The reduction of adult stem cell self-renewal can be an important mechanism of aging. MicroRNAs have been reported to be involved in aging processes. Through a microarray approach, we have identified miR-486-5p, the expression of which is progressively expressed in human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) with aging.

View Article and Find Full Text PDF

A better understanding of the molecular mechanisms that govern human adipose tissue-derived mesenchymal stem cells (hASCs) differentiation could provide new insights into a number of diseases including obesity. Our previous study demonstrated that microRNA-21 (miR-21) controls the adipogenic differentiation of hASCs. In this study, we determined the expression of miR-21 in white adipose tissues in a high-fat diet (HFD)-induced obesity mouse model to examine the relationship between miR-21 and obesity and the effect of miR-21 on hASCs proliferation.

View Article and Find Full Text PDF

β-catenin is a component of the adhesion complex linking cadherin and actin cytoskeleton, as well as a major mediator of the Wnt pathway, which is a critical signal cascade regulating embryonic development, cell polarity, carcinogenesis, and stem cell function. NF-κB functions as a key regulator of immune responses and apoptosis, and mutations in NF-κB signaling can lead to immune diseases and cancers. We previously showed that NF-κB-mediated modulation of β-catenin/Tcf signaling is mediated by leucine zipper tumor suppressor 2 (Lzts2) and that lzts2 expression is differentially regulated in various cancer cells.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-alpha) is a skeletal catabolic agent that stimulates osteoclastogenesis and inhibits osteoblast function. Although TNF-alpha inhibits the mineralization of osteoblasts, the effect of TNF-alpha on mesenchymal stem cells (MSC) is not clear. In this study, we determined the effect of TNF-alpha on osteogenic differentiation of stromal cells derived from human adipose tissue (hADSC) and the role of NF-kappaB activation on TNF-alpha activity.

View Article and Find Full Text PDF

The proangiogenic action of human adipose tissue-derived mesenchymal stem cells (hASCs) transplantation has been shown to be mediated by secretory factors. In this study, we determined if human granulocyte chemotactic protein-2(GCP2) or monocyte chemoattractant protein-1(MCP1) is involved in the proangiogenic action of hASCs transplantation in the hindlimb ischemia model. hASCs secrete GCP2 and MCP1, which leads to increased tubule formation.

View Article and Find Full Text PDF