Background: Human dermal fibroblasts secrete numerous growth factors and proteins that have been suggested to promote wound repair and hair regeneration.
Methods: Human dermal fibroblast-conditioned medium (DFCM) was prepared, and proteomic analysis was performed. Secretory proteins in DFCM were identified using 1-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis, in-gel trypsin protein digestion, and quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS).
Hypertrophic scarring (HTS) is a common fibroproliferative disorder that typically follows thermal and other injuries involving the deep dermis. The underlying pathogenic mechanisms are regulated by transforming growth factor-β (TGF-β); however, the exact mechanisms in HTS have not been elucidated. We conducted this study to explore the cellular signaling mechanisms for expression of Sar1a, a coat protein complex II-associated small GTPase, in HTS fibroblasts (HTSF).
View Article and Find Full Text PDFBackground: Long-pulsed (LP) lasers at pulse durations of 1-300 ms have been used to destroy nests of nevi cells by selectively targeting pigment chromophores.
Objective: To evaluate dual-wavelength LP laser-induced tissue reactions.
Methods: The patterns of LP 755-nm alexandrite (Alex) and/or 1064-nm neodymium (Nd):yttrium-aluminum-garnet (YAG) laser-induced tissue reactions were macroscopically evaluated using a tattoo-embedded phantom.
Background: Intense focused ultrasound (IFU) and radiofrequency (RF) systems generate thermal tissue reactions in multiple zones in the skin, with the microscopic features thereof varying according to energy sources and treatment parameters.
Objective: To evaluate interactive thermal tissue reactions of IFU and RF in cadaveric skin.
Methods: Thermal reaction patterns generated by IFU, invasive bipolar RF, and non-invasive monopolar RF treatments were analyzed in cadaveric skin of the inner thigh.
During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs).
View Article and Find Full Text PDFTolerogenic dendritic cells (tDCs) play an important role in inducing peripheral tolerance; however, few tDC-specific markers have been identified. The aims of this study were to examine whether tDCs show a different gene expression profile from that of immunogenic DCs and identify specific gene markers of each cell type, in DBA/1 mice. tDCs were generated by treating immature DCs (imDCs) with TNF-α and type II collagen.
View Article and Find Full Text PDFHerpes simplex virus (HSV) infection is a possible pathogenic factor in Behçet's disease (BD). Using proteomics analysis, this study detected a target HSV protein. Serum IgA and IgG reactivities against the identified protein were evaluated in patients with BD and in BD-like mice.
View Article and Find Full Text PDFSrc homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2.
View Article and Find Full Text PDFPurpose: We aimed to determine the prevalence of anti-cyclic citrullinated peptide (anti-CCP) antibodies in a large group of Korean patients with Behçet's disease (BD), with and without joint involvement, and to compare these findings with the prevalences of anti-CCP antibodies in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE).
Materials And Methods: We tested 189 patients with BD, 105 with RA, and 36 with SLE for anti-CCP antibodies and IgM rheumatoid factor in serum. We reviewed the medical records of patients with BD to investigate their personal and clinical characteristics as well as their laboratory test results.
α-Synuclein is the principal component of the Lewy body deposits that are characteristic of Parkinson's disease. In vivo, and under physiological conditions in vitro, α-synuclein aggregates to form amyloid fibrils, a process that is likely to be associated with the development of Parkinson's disease. α-Synuclein also possesses chaperone activity to prevent the precipitation of amorphously aggregating target proteins, as demonstrated in vitro.
View Article and Find Full Text PDFBehçet's disease (BD) is a chronic, multisystemic vasculitis that theoretically affects all sizes and types of blood vessels. Although pathogenesis remains enigmatic, endothelial cells are believed to be the primary target in this disease. We detected the target protein using western blotting and immunoprecipitation and determined the amino-acid sequence of the peptide by liquid chromatography-matrix assisted laser desorption/ionization-tandem time-of-flight analysis (LC-MALDI-TOF/TOF).
View Article and Find Full Text PDFBackground: S100A12 is a member of the S100 family of calcium-binding proteins and is secreted either in inflamed tissues or in the bloodstream by activated neutrophils. Expression of S100A12 has been reported in various diseases, especially non-infectious inflammatory diseases, such as Kawasaki disease, giant cell arteritis and inflammatory bowel disease.
Objective: This study was conducted to determine both the tissue expression and the serum levels of S100A12 in Behçet's disease (BD) patients and the correlation of the S100A12 serum level with disease activity of BD.
Clostridium difficile-associated diarrhea and pseudomembranous colitis are typically treated with vancomycin or metronidazole, but recent increases in relapse incidence and the emergence of drug-resistant strains of C. difficile indicate the need for new antibiotics. We previously isolated coprisin, an antibacterial peptide from Copris tripartitus, a Korean dung beetle, and identified a nine-amino-acid peptide in the α-helical region of it (LLCIALRKK) that had antimicrobial activity (J.
View Article and Find Full Text PDFBackground: Phospholipase C-γl (PLC-γl) is known to play a critical role in cell adhesion and migration and is highly expressed in metastatic tumors. In the current study, we found that cells transformed by PLC overexpression (PLC-γl cells) exhibited a marked decrease in expression of the Epo receptor (EpoR). Here, we assessed the role of EpoR-dependent signaling pathways in PLC-γl-dependent regulation of cell adhesion and migration.
View Article and Find Full Text PDFObjectives: We evaluated the reactivity of sera from Behçet's disease (BD), systemic lupus erythematosus (SLE), dermatomyositis (DM), rheumatoid arthritis (RA), and Takayasu's arteritis (TA) patients against human α-enolase and streptococcal α-enolase, and identified additional streptococcal antigens.
Methods: Enzyme-linked immunosorbent assay (ELISA) and immunoblotting were performed using sera from patients with BD, SLE, DM, RA, and TA and healthy volunteers (control) against human α-enolase and streptococcal α-enolase. Immunoblot analysis and matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry were used to identify and recombine other streptococcal antigens.
Clostridium difficile toxin A is known to cause actin disaggregation through the enzymatic inactivation of intracellular Rho proteins. Based on the rapid and severe cell rounding of toxin A-exposed cells, we speculated that toxin A may be involved in post-translational modification of tubulin, leading to microtubule instability. In the current study, we observed that toxin A strongly reduced α-tubulin acetylation in human colonocytes and mouse intestine.
View Article and Find Full Text PDFUnlabelled: The (18)F-FDG uptake pattern on PET could be an indicator of the prognosis and aggressiveness of various tumors, including hepatocellular carcinoma (HCC). Hexokinase, especially hexokinase type II (HKII), plays a critical role in (18)F-FDG uptake in rapidly growing tumors. We established a stable cell line overexpressing HKII by the transfection of full DNA of HKII to HCC cells (SNU449) that express low levels of HKII and investigated how (18)F-FDG uptake mechanisms, especially overexpression of HKII, are linked to tumor proliferation mechanisms.
View Article and Find Full Text PDFAlthough previous studies on hexokinase (HK) II indicate both the N- and C-terminal halves are catalytically active, we show in this study the N-terminal half is significantly more catalytic than the C-terminal half in addition to having a significantly higher Km for ATP and Glu. Furthermore, truncated forms of intact HK II lacking its first N-terminal 18 amino acids (delta18) and a truncated N-terminal half lacking its first 18 amino acids (delta18N) have higher catalytic activity than other mutants tested. Similar results were obtained by PET-scan analysis using (18)FFDG.
View Article and Find Full Text PDFAlpha-synuclein (Syn) is implicated in the pathogenesis of PD and related neurodegenerative disorders. Recent studies have also shown that alpha-synuclein can activate microglia and enhance dopaminergic neurodegeneration. The mechanisms of microglia activation by alpha-synuclein, however, are not well understood.
View Article and Find Full Text PDFHexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII).
View Article and Find Full Text PDFMany lines of evidence suggest that alpha-synuclein can be secreted from cells and can penetrate into them, although the detailed mechanism is not known. In this study, we investigated the amino acid sequence motifs required for the membrane translocation of alpha-synuclein, and the mechanistic features of the phenomenon. We first showed that not only alpha-synuclein but also beta- and gamma-synucleins penetrated into live cells, indicating that the conserved N-terminal region might be responsible for the membrane translocation.
View Article and Find Full Text PDF