Publications by authors named "Keun Heo"

In this study, we investigate the origins of low-frequency noise (LFN) and 1/ noise in CuO thin-film transistors (TFTs). The static direct current (DC) - characterization demonstrates that the channel resistance () contributes significantly to mobility degradation in the TFTs, with channel thickness () controlled through the plasma-enhanced atomic layer deposition (PEALD) process. The 1/ noise followed the Hooge mobility fluctuation (HMF) model, and it was observed that both Coulomb and phonon scattering within the channel, which increased with a decrease in , contributed simultaneously.

View Article and Find Full Text PDF

The demand for compact energy storage devices necessitates the development of high-performance anode materials directly integrated with current collectors, minimizing or eliminating the need for binders or additives. With its layered structure and high theoretical capacity, molybdenum disulfide (MoS) is regarded as a promising anode material for lithium-ion batteries (LIBs). Here, we report chemical vapor deposition (CVD) growth of self-integrated, vertically aligned MoS nanosheets with embedded molybdenum dioxide (MoO) directly on a molybdenum foil and explore its potential as an anode material for LIBs.

View Article and Find Full Text PDF

The relentless miniaturization inherent in complementary metal-oxide semiconductor technology has created challenges at the interface of two-dimensional (2D) materials and metal electrodes. These challenges, predominantly stemming from metal-induced gap states (MIGS) and Schottky barrier heights (SBHs), critically impede device performance. This work introduces an innovative implementation of damage-free SbTe topological van der Waals (T-vdW) contacts, representing an ultimate contact electrode for 2D materials.

View Article and Find Full Text PDF

In this study, a self-powered broadband photodetector based on graphene/NiO/n-Si was fabricated by the direct spin-coating of nanostructured NiO on the Si substrate. The current-voltage measurement of the NiO/Si heterostructure exhibited rectifying characteristics with enhanced photocurrent under light illumination. Photodetection capability was measured in the range from 300 nm to 800 nm, and a higher photoresponse in the UV region was observed due to the wide bandgap of NiO.

View Article and Find Full Text PDF

Negative-differential-resistance (NDR) devices offer a promising pathway for developing future computing technologies characterized by exceptionally low energy consumption, especially multivalued logic computing. Nevertheless, conventional approaches aimed at attaining the NDR phenomenon involve intricate junction configurations and/or external doping processes in the channel region, impeding the progress of NDR devices to the circuit and system levels. Here, an NDR device is presented that incorporates a channel without junctions.

View Article and Find Full Text PDF

The potential for various future industrial applications has made broadband photodetectors beyond visible light an area of great interest. Although most 2D van-der-Waals (vdW) semiconductors have a relatively large energy bandgap (>1.2 eV), which limits their use in short-wave infrared detection, they have recently been considered as a replacement for ternary alloys in high-performance photodetectors due to their strong light-matter interaction.

View Article and Find Full Text PDF

Multi-valued logic (MVL) technology that utilizes more than two logic states has recently been reconsidered because of the demand for greater power saving in current binary logic systems. Extensive efforts have been invested in developing MVL devices with multiple threshold voltages by adopting negative differential transconductance and resistance. In this study, a reconfigurable, multiple negative-differential-resistance (m-NDR) device with an electric-field-induced tunability of multiple threshold voltages is reported, which comprises a BP/ReS heterojunction and a ReS /h-BN/metal capacitor.

View Article and Find Full Text PDF

We report a novel graphene transfer technique for fabricating graphene field-effect transistors (FETs) that avoids detrimental organic contamination on a graphene surface. Instead of using an organic supporting film like poly(methyl methacrylate) (PMMA) for graphene transfer, Au film is directly deposited on the as-grown graphene substrate. Graphene FETs fabricated using the established organic film transfer method are easily contaminated by organic residues, while Au film protects graphene channels from these contaminants.

View Article and Find Full Text PDF

We propose a flexible artificial synapse based on a silicon-indium-zinc-oxide (SIZO)/ion gel hybrid structure directly fabricated on a polyimide substrate, where the channel conductance is effectively modulated via ion movement in the ion gel. This synaptic operation is possible because of the low-temperature deposition process of the SIZO layer (<150°C) and the surface roughness improvement of the poly(4-vinylphenol) buffer layer (12.29→1.

View Article and Find Full Text PDF

Two-dimensional materials have garnered interest from the perspectives of physics, materials, and applied electronics owing to their outstanding physical and chemical properties. Advances in exfoliation and synthesis technologies have enabled preparation and electrical characterization of various atomically thin films of semiconductor transition metal dichalcogenides (TMDs). Their two-dimensional structures and electromagnetic spectra coupled to bandgaps in the visible region indicate their suitability for digital electronics and optoelectronics.

View Article and Find Full Text PDF

Recently, various efforts have been made to implement synaptic characteristics with a ferroelectric field-effect transistor (FeFET), but in-depth physical analyses have not been reported thus far. Here, we investigated the effects by (i) the formation temperature of the ferroelectric material, poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and (ii) the nature of the contact metals (Ti, Cr, Pd) of the FeFET on the operating performance of a FeFET-based artificial synapse in terms of various synaptic performance indices. Excellent ferroelectric properties were induced by maximizing the size and coverage ratio of the β-phase domains by annealing the P(VDF-TrFE) film at 140 °C.

View Article and Find Full Text PDF

Recently, combinations of 2D van der Waals (2D vdW) materials and organic materials have attracted attention because they facilitate the formation of various heterojunctions with excellent interface quality owing to the absence of dangling bonds on their surface. In this work, a double negative differential resistance (D-NDR) characteristic of a hybrid 2D vdW/organic tunneling device consisting of a hafnium disulfide/pentacene heterojunction and a 3D pentacene resistor is reported. This D-NDR phenomenon is achieved by precisely controlling an NDR peak voltage with the pentacene resistor and then integrating two distinct NDR devices in parallel.

View Article and Find Full Text PDF

Brain-inspired parallel computing, which is typically performed using a hardware neural-network platform consisting of numerous artificial synapses, is a promising technology for effectively handling large amounts of informational data. However, the reported nonlinear and asymmetric conductance-update characteristics of artificial synapses prevent a hardware neural-network from delivering the same high-level training and inference accuracies as those delivered by a software neural-network. Here, we developed an artificial van-der-Waals hybrid synapse that features linear and symmetric conductance-update characteristics.

View Article and Find Full Text PDF

For increasing the restricted bit-density in the conventional binary logic system, extensive research efforts have been directed toward implementing single devices with a two threshold voltage (VTH) characteristic via the single negative differential resistance (NDR) phenomenon. In particular, recent advances in forming van der Waals (vdW) heterostructures with two-dimensional crystals have opened up new possibilities for realizing such NDR-based tunneling devices. However, it has been challenging to exhibit three VTH through the multiple-NDR (m-NDR) phenomenon in a single device even by using vdW heterostructures.

View Article and Find Full Text PDF

In this study, a near-infrared photodetector featuring a high photoresponsivity and a short photoresponse time is demonstrated, which is fabricated on rhenium diselenide (ReSe) with a relatively narrow bandgap (0.9-1.0 eV) compared to conventional transition-metal dichalcogenides (TMDs).

View Article and Find Full Text PDF

The recent reports of various photodetectors based on molybdenum disulfide (MoS) field effect transistors showed that it was difficult to obtain optoelectronic performances in the broad detection range [visible-infrared (IR)] applicable to various fields. Here, by forming a mono-/multi-layer nano-bridge multi-heterojunction structure (more than > 300 junctions with 25 nm intervals) through the selective layer control of multi-layer MoS, a photodetector with ultrasensitive optoelectronic performances in a broad spectral range (photoresponsivity of 2.67 × 10 A/W at λ = 520 nm and 1.

View Article and Find Full Text PDF

A bioinspired neuromorphic device operating as synapse and neuron simultaneously, which is fabricated on an electrolyte based on Cu-doped salmon deoxyribonucleic acid (S-DNA) is reported. Owing to the slow Cu diffusion through the base pairing sites in the S-DNA electrolyte, the synaptic operation of the S-DNA device features special long-term plasticity with negative and positive nonlinearity values for potentiation and depression (α and α), respectively, which consequently improves the learning/recognition efficiency of S-DNA-based neural networks. Furthermore, the representative neuronal operation, "integrate-and-fire," is successfully emulated in this device by adjusting the duration time of the input voltage stimulus.

View Article and Find Full Text PDF

Recently, there have been various attempts to demonstrate the feasibility of transition metal dichalcogenide (TMD) transistors for digital logic circuits. A complementary inverter circuit, which is a basic building block of a logic circuit, was implemented in earlier works by heterogeneously integrating n- and p-channel transistors fabricated on different TMD materials. Subsequently, to simplify the circuit design and fabrication process, complementary inverters were constructed on single-TMD materials using ambipolar transistors.

View Article and Find Full Text PDF

Electrochemical metallization (ECM) threshold switches are in great demand for various applications such as next-generation logic technology, future memory, and neuromorphic computing. However, the instability of operation due to inherent filamentary randomness is a severe problem that is yet to be solved. Here, we propose a specially treated hafnium oxide (HfO :N)-based ECM threshold switch with high reliability, low-voltage operation (0.

View Article and Find Full Text PDF

The priority of synaptic device researches has been given to prove the device potential for the emulation of synaptic dynamics and not to functionalize further synaptic devices for more complex learning. Here, we demonstrate an optic-neural synaptic device by implementing synaptic and optical-sensing functions together on h-BN/WSe heterostructure. This device mimics the colored and color-mixed pattern recognition capabilities of the human vision system when arranged in an optic-neural network.

View Article and Find Full Text PDF

A highly stable and reversible n-type doping technique for molybdenum disulfide (MoS) transistors and photodetectors is developed in this study. This doping technique is based on triphenylphosphine (PPh) and significantly improves the performance of MoS transistor and photodetector devices in terms of the on/off-current ratio (8.72 × 10 → 8.

View Article and Find Full Text PDF

In recent years, various van der Waals (vdW) materials have been used in implementing high-performance photodetectors with high photoresponsivity over a wide detection range. However, in most studies reported so far, photodetection in the infrared (IR) region has not been achieved successfully. Although several vdW materials with narrow bandgaps have been proposed for IR detection, the devices based on these materials exhibit notably low photoresponsivity under IR light illumination.

View Article and Find Full Text PDF

The band gap properties of amorphous SiInZnO (a-SIZO) thin-film transistors (TFTs) with different Si concentrations have been studied. The electronic structures of the films, engineered by controlling the Si content, have been investigated through the changes of the band gap and band edge states. Carrier generation at oxygen vacancies can modify the band gap states of oxide thin films.

View Article and Find Full Text PDF

We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.

View Article and Find Full Text PDF
Article Synopsis
  • Negative differential resistance devices have gained interest for their unique current-voltage characteristics, allowing for multiple threshold voltage values and potential multi-valued logic applications.
  • A novel negative differential resistance device is created using a phosphorene/rhenium disulfide (BP/ReS) heterojunction, achieving high peak-to-valley current ratios at varying temperatures.
  • The study analyzes carrier transport mechanisms and presents a ternary inverter, showcasing the potential of this two-dimensional material for future multi-valued logic devices.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionba2148nle0sf3osucj0d4b5m6c4v207r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once