Publications by authors named "Keumrai Whang"

Small-reactor-based polymerase chain reaction (PCR) has attracted considerable attention. A significant number of tiny reactors must be prepared in parallel to capture, amplify, and accurately quantify few target genes in clinically relevant large volume, which, however, requires sophisticated microfabrication and longer sample-to-answer time. Here, single plasmonic cavity membrane is reported that not only enriches and captures few nucleic acids by taking advantage of both capillarity and hydrodynamic trapping but also quickly amplifies them for sensitive plasmonic detection.

View Article and Find Full Text PDF

Polymerase chain reaction (PCR) in small fluidic systems not only improves speed and sensitivity of deoxyribonucleic acid (DNA) amplification but also achieves high-throughput quantitative analyses. However, air bubble trapping and growth during PCR has been considered as a critical problem since it causes the failure of DNA amplification. Here we report bubble-free diatom PCR by exploiting a hierarchically porous silica structure of single-celled algae.

View Article and Find Full Text PDF

Plasmonic nanocavities have been used as a novel platform for studying strong light-matter coupling, opening access to quantum chemistry, material science, and enhanced sensing. However, the biomolecular study of cavity quantum electrodynamics (QED) is lacking. Here, we report the quantum electrodynamic behavior of chlorophyll- in a plasmonic nanocavity.

View Article and Find Full Text PDF

Plasmonic nanocavities between metal nanoparticles on metal films are either hydrophobic or fully occupied by nonmetallic spacers, preventing molecular diffusion into electromagnetic hotspots. Here we realize water-wettable open plasmonic cavities by devising gold nanoparticle with site-selectively grown ultrathin dielectric layer-on-gold film structures. We directly confirm that hydrophilic dielectric layers of SiO or TiO, which are formed only at the tips of gold nanorod via precise temperature control, render sub-10 nm cavities open to the surroundings and completely water-wettable.

View Article and Find Full Text PDF

Dynamics of release and cellular uptake of aqueous CO from CO-releasing molecules (CORMs) significantly affect signaling and cell viability. So far, it has been mainly observed by IR, UV-visible, and fluorescence techniques, which suffer from poor sensitivity and slow response time. Here, we show how to directly probe the mass transfer of aqueous CO from CORMs to cells using a fluidic chamber integrated with live cells and Raman reporters of large-area Au@Pd core-shell nanoparticle assembly to emulate a physiologically relevant microenvironment.

View Article and Find Full Text PDF

Detection of small metabolites is essential for monitoring and optimizing biological gas conversion. Currently, such detection is typically done by liquid chromatography with offline sampling. However, this method often requires large equipment with multiple separation columns and is at risk of serious microbial contamination during sampling.

View Article and Find Full Text PDF

A rapid, precise method for identifying waterborne pathogens is critically needed for effective disinfection and better treatment. However, conventional methods, such as culture-based counting, generally suffer from slow detection times and low sensitivities. Here, we developed a rapid detection method for tracing waterborne pathogens by an innovative optofluidic platform, a plasmonic bacteria on a nanoporous mirror, that allows effective hydrodynamic cell trapping, enrichment of pathogens, and optical signal amplifications.

View Article and Find Full Text PDF

Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone.

View Article and Find Full Text PDF