In recent years, extensive research has been undertaken to develop fiber-shaped optoelectronic devices, because they are aesthetically pleasing, light in weight, and exhibit superior light emitting properties when compared with conventional planar analogues. In this work, we have successfully developed hollow-fiber shaped organic light emitting diodes (HF-OLED) with an exceptionally high luminance and facile color tunability. The HF-OLED device was fabricated by hierarchically depositing amorphous indium-doped tin oxide electrode on a hollow-fiber, followed by the sequential deposition of light-emitting organic layers and Al cathode.
View Article and Find Full Text PDFA novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days).
View Article and Find Full Text PDF