Publications by authors named "Keum-Cheol Hwang"

Polymers for implantable devices are desirable for biomedical engineering applications. This study introduces a water-resistant, self-healing fluoroelastomer (SHFE) as an encapsulation material for antennas. The SHFE exhibits a tissue-like modulus (approximately 0.

View Article and Find Full Text PDF

This paper presents an on-chip fully integrated analog front-end (AFE) with a non-coherent digital binary phase-shift keying (DBPSK) demodulator suitable for short-range magnetic field wireless communication applications. The proposed non-coherent DBPSK demodulator is designed based on using comparators to digitize the received differential analog BPSK signal. The DBPSK demodulator does not need any phase-lock loop (PLL) to detect the data and recover the clock.

View Article and Find Full Text PDF

A proposed prototype of a 10-bit 1 MS/s single-ended asynchronous Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) with an on-chip bandgap reference voltage generator is fabricated with 130 nm technology. To optimize the power consumption, static, and dynamic performance, several techniques have been proposed. A dual-path bootstrap switch was proposed to increase the linearity sampling.

View Article and Find Full Text PDF

This paper presents a multi-gain radio frequency (RF) front-end low noise amplifier (LNA) utilizing a multi-core based on the source degeneration topology. The LNA can cover a wide range of input and output frequency matching by using a receiver (RX) switch at the input and a capacitor bank at the output of the LNA. In the proposed architecture here, to avoid the saturation of RX chain, 12 gain steps including positive, 0 dB, and negative power gains are controlled by a mobile industry processor interface (MIPI).

View Article and Find Full Text PDF

This paper presents a register-transistor level (RTL) based convolutional neural network (CNN) for biosensor applications. Biosensor-based diseases detection by DNA identification using biosensors is currently needed. We proposed a synthesizable RTL-based CNN architecture for this purpose.

View Article and Find Full Text PDF

This paper presents an analog front-end for fine-dust detection systems with a 77-dB-wide dynamic range and a dual-mode ultra-low noise TIA with 142-dBΩ towards the maximum gain. The required high sensitivity of the analog signal conditioning path dictates having a high sensitivity at the front-end while the Input-Referred Noise (IRN) is kept low. Therefore, a TIA with a high sensitivity to detected current bio-signals is provided by a photodiode module.

View Article and Find Full Text PDF

A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy.

View Article and Find Full Text PDF

This paper proposes a class-F synchronous rectifier using an independent second harmonic tuning circuit for the power receiver of 2.4 GHz wireless power transmission systems. The synchronous rectifier can be designed by inverting the RF output port to the RF input port of the pre-designed class-F power amplifier based on time reversal duality.

View Article and Find Full Text PDF

This paper presents an adaptive control and communication protocol (ACCP) for the ultra-low power simultaneous wireless information and power transfer (SWIPT) system for sensor applications. The SWIPT system-related operations depend on harvested radio frequency (RF) energy from the ambient environment. The necessary power for SWIPT system operation is not always available and it depends on the available RF energy in the ambient environment, transmitted RF power from the SWIPT transmitter, and the distance from the transmitter and channel conditions.

View Article and Find Full Text PDF

This paper presents a duty cycle-based, dual-mode simultaneous wireless information and power transceiver (SWIPT) for Internet of Things (IoT) devices in which a sensor node monitors the received power and adaptively controls the single-tone or multitone communication mode. An adaptive power-splitting (PS) ratio control scheme distributes the received radio frequency (RF) energy between the energy harvesting (EH) path and the information decoding (ID) path. The proposed SWIPT enables the self-powering of an ID transceiver above 20 dBm input power, leading to a battery-free network.

View Article and Find Full Text PDF

This paper presents a low-profile log-periodic meandered dipole array (LPMDA) antenna with wideband and high gain characteristics. The antenna consists of 14 dipole elements. For compactness, a meander line structure is applied to each dipole element to reduce its physical length.

View Article and Find Full Text PDF

This paper presents a 5.8 GHz RF-DC converter for high conversion efficiency and high output voltage based on a common-ground and multiple-stack structure. An RF isolation network (RFIN) for the multiple-stack RF-DC converter is proposed to combine the DC output voltage of each stack without separating its RF ground from the DC ground.

View Article and Find Full Text PDF

This paper presents a low power Gaussian Frequency-Shift Keying (GFSK) transceiver (TRX) with high efficiency power management unit and integrated Single-Pole Double-Throw switch for Bluetooth low energy application. Receiver (RX) is implemented with the RF front-end with an inductor-less low-noise transconductance amplifier and 25% duty-cycle current-driven passive mixers, and low-IF baseband analog with a complex Band Pass Filter(BPF). A transmitter (TX) employs an analog phase-locked loop (PLL) with one-point GFSK modulation and class-D digital Power Amplifier (PA) to reduce current consumption.

View Article and Find Full Text PDF

A dual-band circularly polarized (CP) dielectric resonator antenna (DRA) designed on multi-layer substrates is proposed. An asymmetric C-shaped metallic strip is also incorporated into the upper side of the top substrate in the proposed design. The hexagonal dielectric resonator (DR) is excited by the proposed 3-D meandered probe, which generates multiple orthogonal TE-modes.

View Article and Find Full Text PDF

In this paper, a high noise immunity, 28 × 16-channel finger touch sensing IC for an orthogonal frequency division multiplexing (OFDM) touch sensing scheme is presented. In order to increase the signal-to-noise ratio (SNR), the OFDM sensing scheme is proposed. The transmitter (TX) transmits the orthogonal signal to each channels of the panel.

View Article and Find Full Text PDF

This paper presents a 612⁻1152 MHz Injection-Locked Frequency Multiplier (ILFM). The proposed ILFM is used to send an input signal to a receiver in only the I/Q mismatch calibration mode. Adopting a Phase-Locked Loop (PLL) to calibrate the receiver places a burden on this system because of the additional area and power consumption that is required.

View Article and Find Full Text PDF

In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened.

View Article and Find Full Text PDF

In this paper, a low-power and small-area Single Edge Nibble Transmission (SENT) transmitter design is proposed for automotive pressure and temperature complex sensor applications. To reduce the cost and size of the hardware, the pressure and temperature information is processed with a single integrated circuit (IC) and transmitted at the same time to the electronic control unit (ECU) through SENT. Due to its digital nature, it is immune to noise, has reduced sensitivity to electromagnetic interference (EMI), and generates low EMI.

View Article and Find Full Text PDF

A vertical-strip-fed dielectric resonator antenna exhibiting broadband circular polarization characteristics is presented. A broad 3 dB axial ratio bandwidth (ARBW) is achieved by combining multiple orthogonal modes due to the use of a special-shaped dielectric resonator. The proposed antenna is fabricated to evaluate its actual performance capabilities.

View Article and Find Full Text PDF

This paper presents the design of a wideband circularly polarized antenna using a multiple-circular-sector dielectric resonator (DR). The DR is composed of twelve circular-sector DRs with identical central angles of 30 ∘ but with different radii. A genetic algorithm is utilized to optimize the radii of the twelve circular-sector DRs to realize wideband circular polarization.

View Article and Find Full Text PDF

The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization.

View Article and Find Full Text PDF