Publications by authors named "Kettridge N"

Fuel moisture content (FMC) is important for the ignitability, behaviour and severity of wildfires. Understanding the drivers of FMC and its spatial and temporal variability can help us develop fuel moisture models and inform assessments of wildfire behaviour and danger. Here we present the first United Kingdom (UK) national-scale temperate FMC dataset of 8,057 samples of eighteen different fuel constituents collected across 58 sampling sites between 2021-2023.

View Article and Find Full Text PDF

The increasing frequency and severity of UK wildfires, attributed in part to the effects of climate change, highlights the critical role of fuel moisture content (FMC) of live and dead vegetation in shaping wildfire behaviour. However, current models used to assess wildfire danger do not perform well in shrub-type fuels such as Calluna vulgaris, requiring in part an improved understanding of fuel moisture dynamics on diurnal and seasonal scales. To this end, 554 samples of upper live Calluna canopy, live Calluna stems, upper dead Calluna canopy, dead Calluna stems, moss, litter and organic layer (top 5 cm of organic material above mineral soil) were sampled hourly between 10:00 and 18:00 on seven days from March-August.

View Article and Find Full Text PDF

Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings.

View Article and Find Full Text PDF

We estimate the country-level risk of extreme wildfires defined by burned area (BA) for Mediterranean Europe and carry out a cross-country comparison. To this end, we avail of the European Forest Fire Information System (EFFIS) geospatial data from 2006 to 2019 to perform an extreme value analysis. More specifically, we apply a point process characterization of wildfire extremes using maximum likelihood estimation.

View Article and Find Full Text PDF

Northern peatlands store large amounts of carbon. Observations indicate that forests and peatlands in northern biomes can be alternative stable states for a range of landscape settings. Climatic and hydrological changes may reduce the resilience of peatlands and forests, induce persistent shifts between these states, and release the carbon stored in peatlands.

View Article and Find Full Text PDF

Forested coastal wetlands are globally important systems sequestering carbon and intercepting nitrogen pollution from nutrient-rich river systems. Coastal wetlands that have suffered extensive disturbance are the target of comprehensive restoration efforts. Accurate assessment of restoration success requires detailed mechanistic understanding of wetland soil biogeochemical functioning across restoration chrono-sequences, which remains poorly understood for these sparsely investigated systems.

View Article and Find Full Text PDF

Biogeochemical gradients in streambeds are steep and can vary over short distances often making adequate characterisation of sediment biogeochemical processes challenging. This paper provides an overview and comparison of streambed pore-water sampling methods, highlighting their capacity to address gaps in our understanding of streambed biogeochemical processes. This work reviews and critiques available pore-water sampling techniques to characterise streambed biogeochemical conditions, including their characteristic spatial and temporal resolutions, and associated advantages and limitations.

View Article and Find Full Text PDF

Streams and rivers are 'active pipelines' where high rates of carbon (C) turnover can lead to globally important emissions of carbon dioxide (CO) and methane (CH) from surface waters to the atmosphere. Streambed sediments are particularly important in affecting stream chemistry, with rates of biogeochemical activity, and CO and CH concentrations far exceeding those in surface waters. Despite an increase in research on CO and CH in streambed sediments there is a lack of knowledge and insight on seasonal dynamics.

View Article and Find Full Text PDF

The potential of high severity wildfires to increase global terrestrial carbon emissions and exacerbate future climatic warming is of international concern. Nowhere is this more prevalent than within high latitude regions where peatlands have, over millennia, accumulated legacy carbon stocks comparable to all human CO emissions since the beginning of the industrial revolution. Drying increases rates of peat decomposition and associated atmospheric and aquatic carbon emissions.

View Article and Find Full Text PDF

Globally, rivers and streams are important sources of carbon dioxide and methane, with small rivers contributing disproportionately relative to their size. Previous research on greenhouse gas (GHG) emissions from surface water lacks mechanistic understanding of contributions from streambed sediments. We hypothesise that streambeds, as known biogeochemical hotspots, significantly contribute to the production of GHGs.

View Article and Find Full Text PDF
Article Synopsis
  • Fire has been used for a long time in the UK to shape its natural areas, but people often think of it only as harmful.
  • The effects of fire on peatlands can be both good and bad, depending on how it's managed and what people value.
  • It's important to have a fair discussion about fire management, based on science, rather than opinions or politics, to better understand its role in nature.
View Article and Find Full Text PDF

Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage.

View Article and Find Full Text PDF