Publications by authors named "Ketolainen J"

The continuous feeding-mixing system ensures the composition uniformity down to the tableting continuous manufacturing line so that a quality end-product is consistently delivered. Near-infrared spectroscopy (NIRS) enables in-line assessment of the blend's critical quality attributes in real-time. In this study, the effect of total feed rate and impeller speed on the continuous blending process monitored in-line by NIRS was examined by principal component analysis (PCA), ANOVA simultaneous component analysis (ASCA) and partial least squares (PLS) regression.

View Article and Find Full Text PDF

The transfer from batch-based to continuous tablet manufacturing increases the quality and efficiency of processes. Nonetheless, as in the development of a batch process, the continuous process design requires optimization studies to ensure a robust process. In this study, processing of a commercially batch-manufactured tablet product was tested with two continuous direct compression lines while keeping the original formulation composition and tablet quality requirements.

View Article and Find Full Text PDF

As is the case with batch-based tableting processes, continuous tablet manufacturing can be conducted by direct compression or with a granulation step such as dry or wet granulation included in the production procedure. In this work, continuous manufacturing tests were performed with a commercial tablet formulation, while maintaining its original material composition. Challenges were encountered with the feeding performance of the API during initial tests which required designing different powder pre-blend compositions.

View Article and Find Full Text PDF

In this study, an integrated flowsheet model of the continuous feeder-mixer system was calibrated, simulated and compared against experimental data. The feeding process was first investigated using two major components (ibuprofen and microcrystalline cellulose (MCC)), in a formulation comprised of: 30 wt% of ibuprofen, 67.5 wt% MCC, 2 wt% of sodium starch glycolate and 0.

View Article and Find Full Text PDF

Continuous tablet manufacturing is a competitive option to replace the traditional batch manufacturing approach. The aim of this study was to evaluate technology transfer from batch-based direct compression of a commercial tablet formulation to continuous direct compression without changes to the composition of the formulation. Some powder studies were conducted with the raw materials and multi-tip punches were utilized in the tableting studies.

View Article and Find Full Text PDF

Many active pharmaceutical ingredients (API) in development suffer from low aqueous solubilities. Instead of the crystal form, the amorphous state can be used to improve the API's apparent solubility. However, the amorphous state has a higher Gibb's free energy and is inherently unstable and tends to transform back to the more stable crystal form.

View Article and Find Full Text PDF

Despite a well-established process understanding, quality issues for compressed oral solid dosage forms are frequently encountered during various drug product development and production stages. In the current work, a non-destructive contact ultrasonic experimental rig integrated with a collaborative robot arm and an advanced vision system is presented and employed to quantify the effect of the shape of a compressed tablet on its mechanical properties. It is observed that these properties are affected by the tablet geometric shapes and found to be linearly sensitive to the compaction pressures.

View Article and Find Full Text PDF

In early development, when active pharmaceutical ingredient (API) is in short supply, it would be beneficial to reduce the number of experiments by predicting a suitable L/S ratio before starting the product development. The aim of the study was to decrease development time and the amount of API needed for the process development of high drug load formulations for continuous twin-screw wet granulation (TSWG). Mixer torque rheometry was used as a pre-formulation tool to predict the suitable L/S ratios for granulation experiments.

View Article and Find Full Text PDF

Hot-melt extruded (HME) filaments are an essential intermediate product for the three- dimensional (3D) printing of drug delivery systems (DDSs) by the fused deposition modelling (FDM) process. The aim of this study was to design novel polymeric 3D-printable HME filaments loaded with active pharmaceutical ingredients (APIs). The physical solid-state properties, mechanical properties, drug release and short-term storage stability of the filaments and 3D-printed DDSs were studied.

View Article and Find Full Text PDF

When one wishes to convert a batch based manufacturing process of an existing tablet product to a continuous process, there are several available strategies which can be adopted. Theoretically, the most straightforward way would be to proceed with the corresponding processing principles, for example to change a wet granulation (WG) batch process into its continuous WG counterpart. However, in some cases, the choice of roller compaction (RC) could be very attractive due to the notably simpler and inherently continuous nature of the RC manufacturing principle.

View Article and Find Full Text PDF

Fast disintegrating tablets have commonly been used for fast oral drug delivery to patients with swallowing difficulties. The different characteristics of the pore structure of such formulations influence the liquid transport through the tablet and hence affect the disintegration time and the release of the drug in the body. In this work, terahertz time-domain spectroscopy and terahertz pulsed imaging were used as promising analytical techniques to quantitatively analyse the impact of the structural properties on the liquid uptake and swelling rates upon contact with the dissolution medium.

View Article and Find Full Text PDF

Segregation is a common problem in batch-based direct compression (BDC) processes, especially with low-dose tablet products, as is the preparation of a homogenous mixture. The scope of the current work was to explore if a continuous direct compression (CDC) process could serve as a solution for these challenges. Furthermore, the principle of a platform formulation was demonstrated for low dose tablets.

View Article and Find Full Text PDF

Over the recent decade, benefits of continuous manufacturing (CM) of pharmaceutical products have been acknowledged widely. In contrast to batch processes, the product is not physically separated into batches in CM, which creates a few challenges. Product release is done for batches that should have a uniform quality over time, materials need to be tracked along the line, and locations to reject product must be established.

View Article and Find Full Text PDF

There is a current trend in pharmaceutical manufacturing to shift from traditional batch manufacture to continuous manufacturing. The purpose of this study was to test the ability of an integrated continuous direct compression (CDC) line, in relation to batch processing, to achieve consistent tablet quality over long processing periods for formulations with poor flow properties or with a tendency to segregate. The study design included four industrially relevant formulations with different segregation indices and flow properties induced through different grades of the Active Pharmaceutical Ingredient (API), paracetamol, and major filler as well as varying the amount of API.

View Article and Find Full Text PDF

Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data.

View Article and Find Full Text PDF

Heckel analysis is a widely used method for the characterisation of the compression behaviour of pharmaceutical samples during the preparation of solid dosage formulations. The present study introduces an optical version of the Heckel equation that is based on a combination of the conventional Heckel equation together with the linear relationship defined between the effective terahertz (THz) refractive index and the porosity of pharmaceutical tablets. The proposed optical Heckel equation allows us to, firstly, calculate the zero-porosity refractive index, and, secondly, predict the in-die development of the effective refractive index as a function of the compressive pressure during tablet compression.

View Article and Find Full Text PDF

The objective of this study was to devise robust and stable continuous manufacturing process settings, by exploring the design space after an investigation of the lubrication-based parameters influencing the continuous direct compression tableting of high dose paracetamol tablets. Experimental design was used to generate a structured study plan which involved 19 runs. The formulation variables studied were the type of lubricant (magnesium stearate or stearic acid) and its concentration (0.

View Article and Find Full Text PDF

Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g.

View Article and Find Full Text PDF

To evaluate the feasibility of producing solid dispersions with 3-fluid nozzle spray drying to improve the dissolution behavior of lipophilic drugs, 60 experiments were performed based on a Design of Experiment. Solid dispersions with mannitol as a hydrophilic matrix and diazepam as a model drug with a drug load of 20 wt-% were produced. The variables of the experiments were the water/organic solvent ratio, liquid feed flow, total solid content, atomizing airflow and type of organic solvent (ethanol or ethyl acetate).

View Article and Find Full Text PDF

Continuous manufacturing of solid oral dosage forms is promising for increasing the efficiency and quality of pharmaceutical production and products. In this study a whole train continuous direct compression (CDC) line has been provoked using challenging formulations typically prone to segregation in batch powder processing. Industrial compositions including components with variable size, bulk density and cohesive nature were selected.

View Article and Find Full Text PDF

The physical properties and mechanical integrity of pharmaceutical tablets are of major importance when loading with active pharmaceutical ingredient(s) (API) in order to ensure ease of processing, control of dosage and stability during transportation and handling prior to patient consumption. The interaction between API and excipient, acting as functional extender and binder, however, is little understood in this context. The API indomethacin is combined in this study with microcrystalline cellulose (MCC) at increasing loading levels.

View Article and Find Full Text PDF

The objective of this study is to propose a novel optical compressibility parameter for porous pharmaceutical tablets. This parameter is defined with the aid of the effective refractive index of a tablet that is obtained from non-destructive and contactless terahertz (THz) time-delay transmission measurement. The optical compressibility parameter of two training sets of pharmaceutical tablets with a priori known porosity and mass fraction of a drug was investigated.

View Article and Find Full Text PDF

We evaluated the physical stability of thin polymethacrylate-drug films under three different storage conditions by X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, polarized light microscopy, and Fourier transform infrared spectroscopy. Mechanical properties i.e.

View Article and Find Full Text PDF

Pharmaceutical thin films are versatile drug-delivery platforms i.e. allowing transdermal, oral, sublingual and buccal administration.

View Article and Find Full Text PDF