Publications by authors named "Ketcham J"

In our drug discovery campaigns to target the oncogenic drivers of cancers, the demand for a chemoselective, stereoselective and economical synthesis of chiral benzylamines drove the development of a catalytic zirconium hydride reduction. This methodology uses the inexpensive, bench stable zirconocene dichloride, and a novel tetrabutylammonium fluoride activation tactic to catalytically generate a metal hydride under ambient conditions. The diastereo- and chemoselectivity of this reaction was tested with the preparation of key intermediates from our discovery programs and in the scope of sulfinyl ketimines and carbonyls relevant to medicinal chemistry and natural product synthesis.

View Article and Find Full Text PDF

KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway.

View Article and Find Full Text PDF

The H1047R mutation of is highly prevalent in breast cancers and other solid tumors. Selectively targeting PI3Kα over PI3Kα is crucial due to the role that PI3Kα plays in normal cellular processes, including glucose homeostasis. Currently, only one PI3Kα-selective inhibitor has progressed into clinical trials, while three pan mutant (H1047R, H1047L, H1047Y, E542K, and E545K) selective PI3Kα inhibitors have also reached the clinical stage.

View Article and Find Full Text PDF

Chiral amine synthesis remains a significant challenge in accelerating the design cycle of drug discovery programs. A zirconium hydride, due to its high oxophilicity and lower reactivity, gave highly chemo- and stereoselective reductions of sulfinyl ketimines. The development of this zirconocene-mediated reduction helped to accelerate our drug discovery efforts and is applicable to several motifs commonly used in medicinal chemistry.

View Article and Find Full Text PDF

SOS1 and SOS2 are guanine nucleotide exchange factors that mediate RTK-stimulated RAS activation. Selective SOS1:KRAS PPI inhibitors are currently under clinical investigation, whereas there are no reports to date of SOS2:KRAS PPI inhibitors. SOS2 activity is implicated in MAPK rebound when divergent SOS1 mutant cell lines are treated with the SOS1 inhibitor BI-3406; therefore, SOS2:KRAS inhibitors are of therapeutic interest.

View Article and Find Full Text PDF
Article Synopsis
  • The MAPK/RAS pathway is complex and involves numerous protein-protein interactions (PPIs) that play crucial roles in cell signaling.
  • Researchers have been targeting KRAS and its related proteins to develop new treatments for cancers driven by KRAS mutations.
  • This review discusses recent methods aimed at inhibiting RAS signaling by disrupting specific PPIs with proteins like SOS1, RAF, PDEδ, Grb2, and RAS itself.
View Article and Find Full Text PDF

Here we describe the early stages of a fragment-based lead discovery (FBLD) project for a recently elucidated synthetic lethal target, the PRMT5/MTA complex, for the treatment of -deleted cancers. Starting with five fragment/PRMT5/MTA X-ray co-crystal structures, we employed a two-phase fragment elaboration process encompassing optimization of fragment hits and subsequent fragment growth to increase potency, assess synthetic tractability, and enable structure-based drug design. Two lead series were identified, one of which led to the discovery of the clinical candidate MRTX1719.

View Article and Find Full Text PDF

MRTX1719 is an inhibitor of the PRMT5/MTA complex and recently entered clinical trials for the treatment of MTAP-deleted cancers. MRTX1719 is a class 3 atropisomeric compound that requires a chiral synthesis or a chiral separation step in its preparation. Here, we report the SAR and medicinal chemistry design strategy, supported by structural insights from X-ray crystallography, to discover a class 1 atropisomeric compound from the same series that does not require a chiral synthesis or a chiral separation step in its preparation.

View Article and Find Full Text PDF

SOS1 is one of the major guanine nucleotide exchange factors that regulates the ability of KRAS to cycle through its "on" and "off" states. Disrupting the SOS1:KRAS protein-protein interaction (PPI) can increase the proportion of GDP-loaded KRAS, providing a strong mechanistic rationale for combining inhibitors of the SOS1:KRAS complex with inhibitors like MRTX849 that target GDP-loaded KRAS. In this report, we detail the design and discovery of MRTX0902─a potent, selective, brain-penetrant, and orally bioavailable SOS1 binder that disrupts the SOS1:KRAS PPI.

View Article and Find Full Text PDF

The PRMT5•MTA complex has recently emerged as a new synthetically lethal drug target for the treatment of -deleted cancers. Here, we report the discovery of development candidate . is a potent and selective binder to the PRMT5•MTA complex and selectively inhibits PRMT5 activity in -deleted cells compared to -wild-type cells.

View Article and Find Full Text PDF

We hypothesize that analyzing individual-level secondary data with instrumental variable (IV) methods can advance knowledge of the long-term effects of air pollution on dementia. We discuss issues in measurement using secondary data and how IV estimation can overcome biases due to measurement error and unmeasured variables. We link air-quality data from the Environmental Protection Agency's monitors with Medicare claims data to illustrate the use of secondary data to document associations.

View Article and Find Full Text PDF

The C-C chemokine receptor 4 (CCR4) is broadly expressed on regulatory T cells (T) as well as other circulating and tissue-resident T cells. T can be recruited to the tumor microenvironment (TME) through the C-C chemokines CCL17 and CCL22. T accumulation in the TME has been shown to dampen the antitumor immune response and is thought to be an important driver in tumor immune evasion.

View Article and Find Full Text PDF

Recruitment of suppressive CD4 FOXP3 regulatory T cells (T) to the tumor microenvironment (TME) has the potential to weaken the antitumor response in patients receiving treatment with immuno-oncology (IO) agents. Human T express CCR4 and can be recruited to the TME through the CC chemokine ligands CCL17 and CCL22. In some cancers, T accumulation correlates with poor patient prognosis.

View Article and Find Full Text PDF

Recruitment of naturally occurring suppressive CD4, CD25, and FOXP3 regulatory T cells (T) to the tumor microenvironment (TME) has the potential to weaken the antitumor response in patients receiving treatment with immuno-oncology (IO) agents. Human T express CCR4 and can be recruited to the TME through the C-C chemokines CCL17 and CCL22. We have recently developed a series of potent, orally bioavailable small molecule antagonists of CCR4 that can block recruitment of T into the TME.

View Article and Find Full Text PDF

Consumers' enrollment decisions in Medicare Part D can be explained by Abaluck and Gruber’s (2011) model of utility maximization with psychological biases or by a neoclassical version of their model that precludes such biases. We evaluate these competing hypotheses by applying nonparametric tests of utility maximization and model validation tests to administrative data. We find that 79 percent of enrollment decisions from 2006 to 2010 satisfied basic axioms of consumer theory under the assumption of full information.

View Article and Find Full Text PDF

The synthesis and biological evaluation of chromane-containing bryostatin analogues WN-2-WN-7 and the previously reported salicylate-based analogue WN-8 are described. Analogues WN-2-WN-7 are prepared through convergent assembly of the chromane-containing fragment B-I with the "binding domain" fragment A-I or its C26-des-methyl congener, fragment A-II. The synthesis of fragment B-I features enantioselective double C-H allylation of 1,3-propanediol to form the C-symmetric diol 3 and Heck cyclization of bromo-diene 5 to form the chromane core.

View Article and Find Full Text PDF

We study whether people became less likely to switch Medicare prescription drug plans (PDPs) due to more options and more time in Part D. Panel data for a random 20 percent sample of enrollees from 2006--2010 show that 50 percent were not in their original PDPs by 2010. Individuals switched PDPs in response to higher costs of their status quo plans, saving them money.

View Article and Find Full Text PDF

A novel gold-catalyzed synthesis of unsaturated spiroketals that addresses regioselectivity issues commonly reported in metal-catalyzed spiroketalization of alkynes is reported. The reaction sequence is regulated by an acetonide protecting group which undergoes extrusion of acetone to deliver the desired spiroketals in good yields and diastereoselectivities. The reaction, which is carried out under very mild conditions employing AuCl as the catalyst, should be widely applicable in the synthesis of a broad range of spiroketals.

View Article and Find Full Text PDF

The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.

View Article and Find Full Text PDF

The use of alcohols and unsaturated reactants for the redox-triggered generation of nucleophile-electrophile pairs represents a broad, new approach to carbonyl addition chemistry. Discrete redox manipulations that are often required for the generation of carbonyl electrophiles and premetalated carbon-centered nucleophiles are thus avoided. Based on this concept, a broad, new family of enantioselective C-C coupling reactions that are catalyzed by iridium or ruthenium complexes have been developed, which are summarized in this Minireview.

View Article and Find Full Text PDF

Autologous stem cell transplant (ASCT) is an effective treatment for multiple myeloma (MM). However, the timing of ASCT in the era of novel agents (lenalidomide, thalidomide, bortezomib) is unknown. We retrospectively reviewed the outcome of patients with MM who received novel agent-based induction treatment and received first ASCT within 12 months of diagnosis (early ASCT, n = 102) or at a later date (late ASCT, n = 65).

View Article and Find Full Text PDF

The Au(I)-catalyzed intermolecular hydroalkoxylation of alkynes with allylic alcohols to provide allyl vinyl ethers that subsequently undergo Claisen rearrangement is reported. This new cascade reaction strategy facilitates the direct formation of γ,δ-unsaturated ketones from simple starting materials in a single step.

View Article and Find Full Text PDF

Under Medicare Part D, senior citizens choose prescription drug insurance offered by numerous private insurers. We examine nonpoor enrollees' actions in 2006 and 2007 using panel data. Our sample reduced overspending by $298 on average, with gains by 81 percent of them.

View Article and Find Full Text PDF

Background: Despite receiving identical reimbursement for treating heart disease patients with bare metal stents (BMS) or drug-eluting coronary stents (DES), cardiologists' use of the new technology (DES) may have varied by patient payer type as DES diffused. Payer-related factors that differ between hospitals and/or differential treatment inside hospitals might explain any overall differences by payer type.

Objectives: To assess the association between payer and DES use and to examine between-hospital and within-hospital variation in DES use over time.

View Article and Find Full Text PDF