Publications by authors named "Kestutis Staliunas"

We demonstrate all-optical spatial mode-cleaning in non-Hermitian waveguides. The effect is accounted by a unidirectional coupling among the modes resulting from a simultaneous modulation of the refractive index and the gain/loss along graded index multimodal waveguides. Depending on the spatial delay between the real and imaginary part of the potential modulation, higher or lower order modes are favored, which in latter case eventually leads to an nearly-monomode propagation.

View Article and Find Full Text PDF

We unveil a new scenario for the formation of dissipative localized structures in nonlinear systems. Commonly, the formation of such structures arises from the connection of a homogeneous steady state with either another homogeneous solution or a pattern. Both scenarios, typically found in cavities with normal and anomalous dispersion, respectively, exhibit unique fingerprints and particular features that characterize their behavior.

View Article and Find Full Text PDF

The goal and essential parameter of laser light conversion is achieving emitted radiation of higher brightness. For many applications, the laser beam must have the highest available beam quality and highest achievable power. However, lasers with higher average power values usually have poorer beam quality, limiting the achievable brightness.

View Article and Find Full Text PDF

We show that the simultaneous modulation of the propagation constant and of the gain/loss coefficient along the graded index multimode fibers results in unidirectional coupling among the modes, which leads to either the enhancement or the reduction of the excitation of higher order transverse modes, depending on the modulation parameters. In the latter case, effective mode cleaning is predicted, ideally resulting in single-mode spatially coherent output. The effect is semi-analytically predicted on a simplified Gaussian beam approximation and numerically proven by solving the wave propagation equation introducing the non-Hermitian modulated potential.

View Article and Find Full Text PDF

We report on observations of conical third harmonic emission that emerges during supercontinuum generation produced by self-focusing and filamentation of high (20-200 kHz) repetition rate 180 fs, 1035 nm pulses from an amplified Yb:KGW laser in various nonlinear crystals and glasses: YAG, sapphire, YLF, LiF, CaF, MgF, LiSAF, fused silica and BK-7 glass. We show that conical third harmonic generation is a phase-matched four-wave mixing process, where noncollinear phase matching is achieved by means of reciprocal lattice vector, inversely proportional to the period of nanograting, which is inscribed by femtosecond filament in the volume of nonlinear material. The existence of a particular period required to phase match conical third harmonic generation was indirectly verified by investigations of periodicity features of high and low spatial frequency laser-induced periodic surface structures, in which matter is reorganized in a similar fashion.

View Article and Find Full Text PDF

We propose a genetic algorithm-assisted inverse design approach to achieve 'on- demand' light transport in periodic and non-periodic planar structures containing dielectric and gain-loss layers. The optimization algorithm efficiently produces non-Hermitian potentials from any arbitrarily given real (or imaginary) permittivity distribution for the desired frequency selective and broadband asymmetric reflectivity. Indeed, we show that the asymmetric response is directly related to the area occupied by the obtained permittivity distribution in the complex plane.

View Article and Find Full Text PDF

The self-organised conical needles produced by plasma etching of silicon (Si), known as black silicon (b-Si), create a form-birefringent surface texture when etching of Si orientated at angles of θ < 50 - 70 (angle between the Si surface and vertical plasma E-field). The height of the needles in the form-birefringent region following 15 min etching was d ∼ 200 nm and had a 100 μm width of the optical retardance/birefringence, characterised using polariscopy. The height of the b-Si needles corresponds closely to the skin-depth of Si ∼λ/4 for the visible spectral range.

View Article and Find Full Text PDF

In this work, we experimentally demonstrate that a thin rectangle dielectric-metal structure can have a function of a flat focusing mirror based on photonic jet effect in reflection mode. Using polydimethylsiloxane (PDMS) rectangle with size length of 10 μm and wavelength-scale thickness of 1 μm on the top of a silicon wafer, we have built a flat mirror which focuses an incident beam at the focal length changing from 1.38 μm to 11.

View Article and Find Full Text PDF

A broadband graphene-on-Si3N4-membrane photodetector for the visible-IR spectral range is realised by simple lithography and deposition techniques. Photo-current is produced upon illumination due to presence of the build-in potential between dissimilar metal electrodes on graphene as a result of charge transfer. The sensitivity of the photo-detector is ∼ 1 .

View Article and Find Full Text PDF

We propose and experimentally demonstrate femtosecond direct laser writing with Bessel beams for the fabrication of photonic crystals with spatial filtering functionality. Such filters are mechanically stable, of small (of the order of a millimeter) size, do not require direct access to the far-field domain, and therefore are excellent candidates for intracavity spatial filtering applications in minilasers and microlasers. The proposed technique allows the fabrication of photonic crystal filters in inorganic glass, with a narrow angle (∼1°) nearly 100%-transmission passband between a broad angle (∼10°) nearly 0%-transmission angular stopbands.

View Article and Find Full Text PDF

Optical frequency combs (OFCs), consisting of a set of phase-locked, equally spaced laser frequency lines, have enabled a great leap in precision spectroscopy and metrology since seminal works of Hänsch et al. Nowadays, OFCs are cornerstones of a wealth of further applications ranging from chemistry and biology to astrophysics and including molecular fingerprinting and light detection and ranging (LIDAR) systems, among others. Driven passive optical resonators constitute the ideal platform for OFC generation in terms of compactness and low energy footprint.

View Article and Find Full Text PDF

We propose a novel physical mechanism based on periodic non-Hermitian potentials to efficiently control the complex spatial dynamics of broad-area lasers, particularly in vertical-cavity surface-emitting lasers (VCSELs), achieving a stable emission of maximum brightness. A radially dephased periodic refractive index and gain-loss modulations accumulate the generated light from the entire active layer and concentrate it around the structure axis to emit narrow, bright beams. The effect is due to asymmetric inward radial coupling between transverse wave vectors for particular phase differences of the refractive index and gain-loss modulations.

View Article and Find Full Text PDF

Instabilities of uniform states are ubiquitous processes occurring in a variety of spatially extended nonlinear systems. These instabilities are at the heart of symmetry breaking, condensate dynamics, self-organisation, pattern formation, and noise amplification across diverse disciplines, including physics, chemistry, engineering, and biology. In nonlinear optics, modulation instabilities are generally linked to the so-called parametric amplification process, which occurs when certain phase-matching or quasi-phase-matching conditions are satisfied.

View Article and Find Full Text PDF

In this Letter, the design of a directional optical cloaking by a genetic algorithm is proposed and realized experimentally. A three-dimensional finite-difference time-domain method is combined with the genetic optimization approach to generate the cloaking structure to directionally cloak a cylindrical object made of a perfect electrical conductor by suppressing the undesired scattered fields around the object. The optimization algorithm designs the permittivity distribution of the dielectric polylactide material to achieve an optical cloaking effect.

View Article and Find Full Text PDF

We show that the emission of broad-area semiconductor amplifiers and lasers can be efficiently stabilized by introducing two-dimensional periodic modulations simultaneously on both the refractive index and the pump (gain-loss) profiles in the transverse and longitudinal directions. The interplay between such index and gain-loss modulations efficiently suppresses the pattern-forming instabilities, leading to highly stable and bright narrow output beams from such sources. We also determine the stabilization performance of the device as a function of the pump current and linewidth enhancement factor.

View Article and Find Full Text PDF

Light localization and intensity enhancement in a woodpile layer-by-layer photonic crystal, whose interlayer distance along the light propagation direction is gradually varied, has been theoretically predicted and experimentally demonstrated. The phenomenon is shown to be related to the progressive slowing down and stopping of the incident wave, as a result of the gradual variation of the local dispersion. The light localization is chromatically resolved, since every frequency component is stopped and reflected back at different positions along the crystal.

View Article and Find Full Text PDF

The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality.

View Article and Find Full Text PDF

Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a demultiplexer with point-defect resonators and a reflection feedback mechanism in a photonic crystal waveguide (PCW). A tapered PCW has been chosen as the necessary reflector, which enhances the drop efficiency. Due to the variation of the single-mode waveguide width of the tapered PCW, spatial alteration of the effective refractive index can be achieved.

View Article and Find Full Text PDF

We describe power-dependent dynamics of conversion of the guided modes of various guiding structures due to nearly resonant longitudinal modulation of the nonlinear coefficient of the medium. It is shown that the control of the energy exchange integrals, as well as of the input weights of the interacting modes, is especially crucial for efficient mode conversion in the setting considered here. Complex dynamics of conversion incorporates various scenarios, including nonharmonic oscillations of the energy weights, which mimics Jacoby elliptical functions.

View Article and Find Full Text PDF

We study the formation of gap solitons in the presence of a parametric pump. It is shown that a parametric pump can stabilize stationary solitons continuously emitting dispersive waves. The resonant interactions of the radiation and the solitons are studied and it is shown that the solitons can be effectively controlled by the radiation.

View Article and Find Full Text PDF

We present a review, together with new results, of a universal forcing of oscillatory systems, termed 'rocking', which leads to the emergence of a phase bistability and to the kind of pattern formation associated with it, characterized by the presence of phase domains, phase spatial solitons and phase-bistable extended patterns. The effects of rocking are thus similar to those observed in the classic 2 : 1 resonance (the parametric resonance) of spatially extended systems of oscillators, which occurs under a spatially uniform, time-periodic forcing at twice the oscillations' frequency. The rocking, however, has a frequency close to that of the oscillations (it is a 1 : 1 resonant forcing) and hence is a good alternative to the parametric forcing when the latter is inefficient (e.

View Article and Find Full Text PDF

We demonstrate that crossed arrays of optical fibers support the double-discrete linear and nonlinear propagation of light beams, in which not only the transverse coordinate (the fiber's number) is discrete, but also the longitudinal (propagation) coordinate, i.e., the number of the fiber-crossing site, is effectively discrete too.

View Article and Find Full Text PDF

We predict the existence of evanescent modes with unlocked phases in two-dimensional (2D) dielectric periodic structures. Contrary to what is known for one-dimensional structures, where evanescent fields lock to the host modulation, we show that in 2D systems a new class of evanescent modes exists with an unlocked real part of the wave vector. Hence, beams constructed from such unlocked evanescent waves can exhibit spatial effects.

View Article and Find Full Text PDF

We propose a versatile and efficient technique for the formation of X-pulses in materials with a periodical gain/loss modulation on the wavelength scale. We show that in such materials the strong wave-vector anisotropy of amplification/attenuation of the Bloch modes enables the shaping of ultra-short light pulses around the edges of the first Brillouin zone. X-pulses generation is numerically demonstrated and the optimum conditions are derived; specific characteristics of X-pulses can be tailored by appropriate selection of the geometry and modulation depth.

View Article and Find Full Text PDF