Publications by authors named "Kestutis J Barkauskas"

Peripheral immune cells are critical to the pathogenesis of neurodegenerative diseases including multiple sclerosis (MS) (Hendriks et al., 2005; Kasper and Shoemaker, 2010). However, the precise sequence of tissue events during the early asymptomatic induction phase of experimental autoimmune encephalomyelitis (EAE) pathogenesis remains poorly defined.

View Article and Find Full Text PDF

Background: The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction.

View Article and Find Full Text PDF

This study combines fast magnetic resonance imaging (MRI) and model simulation of tissue thermal ablation for monitoring and predicting the dynamics of lesion size for tumor destruction. In vivo experiments were conducted using radiofrequency (RF) thermal ablation in paraspinal muscle of rabbit with a VX2 tumor. Before ablation, turbo-spin echo (TSE) images visualized the 3-D tumor (necrotic core and tumor periphery) and surrounding normal tissue.

View Article and Find Full Text PDF

Purpose: To monitor and predict tissue temperature distributions and lesion boundaries during thermal ablation by combining MRI and thermal modeling methods.

Materials And Methods: Radiofrequency (RF) ablation was conducted in the paraspinal muscles of rabbits with MRI monitoring. A gradient-recalled echo (GRE) sequence via a 1.

View Article and Find Full Text PDF

Purpose: To develop and analyze the performance of the variation correction algorithm (VCA), a phase correction technique that mitigates the contribution of background phase variations by combining accurate alignment of echoes, K-space-based phase correction (as opposed to spatial polynomials), and extraction of alias-free phase difference images.

Materials And Methods: A series of echo-shifted gradient-recalled echo (GRE) images was processed with K-space alignment and phase corrected with increasing sizes of M x M masks of central K-space coefficients. The extent of background phase variation suppression due to magnet field drift was assessed.

View Article and Find Full Text PDF