Publications by authors named "Kesterson R"

RANKL and its receptor RANK play a vital role in osteoclastogenesis. RANK primarily recruits TRAFs to promote osteoclastogenesis but also contains an TRAF-independent motif (IVVY), which mediates osteoclast lineage commitment in vitro. Here, we have developed knockin mice in which inactivating mutations are introduced in the IVVY motif (IVVY to IVAF).

View Article and Find Full Text PDF

Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor.

View Article and Find Full Text PDF

Background: With the recognition that noncancerous cells function as critical regulators of brain tumor growth, we recently demonstrated that neurons drive low-grade glioma initiation and progression. Using mouse models of neurofibromatosis type 1 (NF1)-associated optic pathway glioma (OPG), we showed that Nf1 mutation induces neuronal hyperexcitability and midkine expression, which activates an immune axis to support tumor growth, such that high-dose lamotrigine treatment reduces Nf1-OPG proliferation. Herein, we execute a series of complementary experiments to address several key knowledge gaps relevant to future clinical translation.

View Article and Find Full Text PDF
Article Synopsis
  • * Gene-targeted therapies show potential to address these limitations, but challenges in preclinical and clinical testing, as well as delivery methods, need to be resolved first.
  • * Developing better preclinical models, validated assays to measure specific protein activities, and educating patients and clinicians about the risks and benefits of these therapies is crucial for future advancements.
View Article and Find Full Text PDF

This article is the lead piece in a special report that presents the results of a bioethical investigation into chimeric research, which involves the insertion of human cells into nonhuman animals and nonhuman animal embryos, including into their brains. Rapid scientific developments in this field may advance knowledge and could lead to new therapies for humans. They also reveal the conceptual, ethical, and procedural limitations of existing ethics guidance for human-nonhuman chimeric research.

View Article and Find Full Text PDF

We investigated the feasibility of utilizing an exon-skipping approach as a genotype-dependent therapeutic for neurofibromatosis type 1 (NF1) by determining which exons might be skipped while maintaining neurofibromin protein expression and GTPase activating protein (GAP)-related domain (GRD) function. Initial analysis predicted exons that can be skipped with minimal loss of neurofibromin function, which was confirmed by assessments utilizing an cDNA-based functional screening system. Skipping of exons 17 or 52 fit our criteria, as minimal effects on protein expression and GRD activity were noted.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with almost 3000 different disease-causing variants within the gene identified. Up to 44% of these variants cause splicing errors to occur within pre-mRNA. A recurrent variant in exon 13, c.

View Article and Find Full Text PDF

Variants within the Neurotrophic Tyrosine Kinase Receptor Type 2 (NTRK2) gene have been discovered to play a role in developmental and epileptic encephalopathies, a group of debilitating conditions for which little is known about cause or treatment. Here, we determine the functional consequences of two variants: p.Tyr434Cys (Y434C) (located in the transmembrane domain) and p.

View Article and Find Full Text PDF

We have created a panel of 29 NF1 variant complementary DNAs (cDNAs) representing missense variants, many with clinically relevant phenotypes, in-frame deletions, splice variants, and nonsense variants. We have determined the functional consequences of the variants, assessing their ability to produce mature neurofibromin and restore Ras signaling activity in NF1 null (-/-) cells. cDNAs demonstrate variant-specific differences in neurofibromin protein levels, suggesting that some variants lead to neurofibromatosis type 1 (NF1) gene or protein instability or enhanced degradation.

View Article and Find Full Text PDF

Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1 (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin.

View Article and Find Full Text PDF

Background: Genetic tools to study gene function and the fate of cells in the anterior limb bud are very limited.

Results: We describe a transgenic mouse line expressing CreER from the Aristaless-like 4 (Alx4) promoter that induces recombination in the anterior limb. Cre induction at embryonic day 8.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a developmental and epileptic encephalopathy that results from mutations in the Nav1.1 sodium channel encoded by SCN1A. Most known DS-causing mutations are in coding regions of SCN1A, but we recently identified several disease-associated SCN1A mutations in intron 20 that are within or near to a cryptic and evolutionarily conserved "poison" exon, 20N, whose inclusion is predicted to lead to transcript degradation.

View Article and Find Full Text PDF

encodes an ATP-dependent chromatin remodeling factor. Mutation of this gene causes multiple developmental disorders, including CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth/development, Genital abnormalities, and Ear anomalies) syndrome, in which conotruncal anomalies are the most prevalent form of heart defects. How CHD7 regulates conotruncal development remains unclear.

View Article and Find Full Text PDF

Purpose: To identify the role of the BBSome protein Bardet-Biedl syndrome 5 (BBS5) in photoreceptor function, protein trafficking, and structure using a congenital mutant mouse model.

Methods: Bbs5-/- mice (2 and 9 months old) were used to assess retinal function and morphology. Hematoxylin and eosin staining of retinal sections was performed to visualize histology.

View Article and Find Full Text PDF

GPRC6A is proposed to regulate energy metabolism in mice, but in humans a KGKY polymorphism in the third intracellular loop (ICL3) is proposed to result in intracellular retention and loss-of-function. To test physiological importance of this human polymorphism in vivo, we performed targeted genomic humanization of mice by using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9) system to replace the RKLP sequence in the ICL3 of the GPRC6A mouse gene with the uniquely human KGKY sequence to create Gprc6a- mice. Knock-in of a human KGKY sequence resulted in a reduction in basal blood glucose levels and increased circulating serum insulin and FGF-21 concentrations.

View Article and Find Full Text PDF

Significant advances in biotechnology have led to the development of a number of different mutation-directed therapies. Some of these techniques have matured to a level that has allowed testing in clinical trials, but few have made it to approval by drug-regulatory bodies for the treatment of specific diseases. While there are still various hurdles to be overcome, recent success stories have proven the potential power of mutation-directed therapies and have fueled the hope of finding therapeutics for other genetic disorders.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), with approximately 90% of patients harboring at least one copy of the disease-associated variant F508del. We utilized a yeast phenomic system to identify genetic modifiers of F508del-CFTR biogenesis, from which ribosomal protein L12 (RPL12/uL11) emerged as a molecular target. In the present study, we investigated mechanism(s) by which suppression of RPL12 rescues F508del protein synthesis and activity.

View Article and Find Full Text PDF

Retinol dehydrogenases catalyze the rate-limiting step in the biosynthesis of retinoic acid, a bioactive lipid molecule that regulates the expression of hundreds of genes by binding to nuclear transcription factors, the retinoic acid receptors. Several enzymes exhibit retinol dehydrogenase activities ; however, their physiological relevance for retinoic acid biosynthesis remains unclear. Here, we present evidence that two murine epidermal retinol dehydrogenases, short-chain dehydrogenase/reductase family 16C member 5 (SDR16C5) and SDR16C6, contribute to retinoic acid biosynthesis in living cells and are also essential for the oxidation of retinol to retinaldehyde Mice with targeted knockout of the more catalytically active SDR16C6 enzyme have no obvious phenotype, possibly due to functional redundancy, because and exhibit an overlapping expression pattern during later developmental stages and in adulthood.

View Article and Find Full Text PDF

Neurofibromatosis Type 1 (NF1) is caused by pathogenic variants in the gene encoding neurofibromin. Definition of NF1 protein-protein interactions (PPIs) has been difficult and lacks replication, making it challenging to define binding partners that modulate its function. We created a novel tandem affinity purification (TAP) tag cloned in frame to the 3' end of the full-length murine cDNA ().

View Article and Find Full Text PDF

Upon receptor activator of NF-κB ligand (RANKL) binding, RANK promotes osteoclast formation through the recruitment of tumor necrosis factor (TNF) receptor-associated factors (TRAFs). In vitro assays identified two RANK intracellular motifs that bind TRAFs: PVQEET (Motif 2) and PVQEQG (Motif 3), which potently mediate osteoclast formation in vitro. To validate the in vitro findings, we have generated knock-in (KI) mice harboring inactivating mutations in RANK Motifs 2 and 3.

View Article and Find Full Text PDF

Loss of NF1 is an oncogenic driver. In efforts to define pathways responsible for the development of neurofibromas and other cancers, transcriptomic and proteomic changes are evaluated in a non-malignant NF1 null cell line. NF1 null HEK293 cells were created using CRISPR/Cas9 technology and they are compared to parental cells that express neurofibromin.

View Article and Find Full Text PDF

Heterozygosity for human polycystic kidney and hepatic disease 1 ( PKHD1) mutations was recently associated with cystic liver disease and radiographic findings resembling medullary sponge kidney (MSK). However, the relevance of these associations has been tempered by a lack of cystic liver or renal disease in heterozygous mice carrying Pkhd1 gene trap or exon deletions. To determine whether heterozygosity for a smaller Pkhd1 defect can trigger cystic renal disease in mice, we generated and characterized mice with the predicted truncating Pkhd1 mutation in a region corresponding to the middle of exon 20 cluster of five truncating human mutations (between PKHD1 and PKHD1).

View Article and Find Full Text PDF

Deficiency in polycystin 1 triggers specific changes in energy metabolism. To determine whether defects in other human cystoproteins have similar effects, we studied extracellular acidification and glucose metabolism in human embryonic kidney (HEK-293) cell lines with polycystic kidney and hepatic disease 1 ( PKHD1) and polycystic kidney disease (PKD) 2 ( PKD2) truncating defects along multiple sites of truncating mutations found in patients with autosomal recessive and dominant PKDs. While neither the PKHD1 or PKD2 gene mutations nor their position enhanced cell proliferation rate in our cell line models, truncating mutations in these genes progressively increased overall extracellular acidification over time ( P < 0.

View Article and Find Full Text PDF

The key negative regulatory gene of the RAS pathway, , is mutated or deleted in numerous cancer types and is associated with increased cancer risk and drug resistance. Even though women with neurofibromatosis (germline mutations) have a substantially increased breast cancer risk at a young age and is commonly mutated in sporadic breast cancers, we have a limited understanding of the role of in breast cancer. We utilized CRISPR-Cas9 gene editing to create rat models to evaluate the effect of deficiency on tumorigenesis.

View Article and Find Full Text PDF