Publications by authors named "Kest B"

Morphine elicits a paradoxical state of increased pain sensitivity, known as morphine-induced hyperalgesia (MIH), which complicates its clinical efficacy. We have previously shown that systemic injections of N-methyl-d-aspartate receptor (NMDAR) and melanocortin-1 receptor (MC1R) antagonists sex-dependently reverse MIH during morphine infusion (40mg/kg/24h) in male and female mice, respectively. This qualitative sex difference is ovarian hormone dependent, as NMDAR antagonists reverse MIH in ovariectomized females but are rendered ineffective following progesterone injection in OVX mice.

View Article and Find Full Text PDF

The µ opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing in rodents and humans, with dozens of alternatively spliced variants of the OPRM1 gene. The present studies establish a SYBR green quantitative PCR (qPCR) assay to more accurately quantify mouse OPRM1 splice variant mRNAs. Using these qPCR assays, we examined the expression of OPRM1 splice variant mRNAs in selected brain regions of four inbred mouse strains displaying differences in µ opioid-induced tolerance and physical dependence: C56BL/6J, 129P3/J, SJL/J and SWR/J.

View Article and Find Full Text PDF

Morphine-3β-D-glucuronide (M3G), a primary morphine metabolite, evokes hyperalgesia in mice and rats and putatively mediates hyperalgesia associated with morphine (MOR) administration. However, M3G does not act via opioid receptors and its locus of activity in the CNS is unknown. Here we assessed the density of neurons immunoreactive for c-Fos, an immediate early gene regulated by neuronal activity, in the periaqueductal gray (PAG), a midbrain region critical to pain modulation, in male CD-1 mice after MOR and M3G exposure.

View Article and Find Full Text PDF

Opioid-induced hyperalgesia (OIH) is a paradoxical increase in pain perception that may manifest during opioid treatment. For morphine, the metabolite morphine-3-glucuronide (M3G) is commonly believed to underlie this phenomenon. Here, in three separate studies, we empirically assess the role of M3G in morphine-induced hyperalgesia.

View Article and Find Full Text PDF

Continuous morphine treatment can paradoxically increase nociception (i.e. hyperalgesia) in male and female mice, but sex differences have been reported.

View Article and Find Full Text PDF

Although a contribution of sex in opioid efficacy has garnered much attention, the confirmation and direction of any such difference remain elusive. We performed a systematic review of the available literature on sex differences in μ and mixed μ/κ opioid effect on acute and experimental pain. Fifty unique studies (including three unpublished studies) were included in the analyses.

View Article and Find Full Text PDF

Background: N-Methyl-D-aspartate receptor antagonists reverse hyperalgesia during morphine infusion in male mice only. Because the melanocortin-1 receptor can act as a female-specific counterpart to N-methyl-D-aspartate receptors in kappa-opioid analgesic mechanisms, the authors assessed the contribution of melanocortin-1 receptors to the sex-specific mechanisms underlying morphine hyperalgesia.

Methods: The tail-withdrawal test was used to compare the nociceptive responses of male and female C57BL/6J (B6) mice with those of C57BL/6J-Mc(1r(e/e)) mice, spontaneous mutants of the B6 background lacking functional melanocortin-1 receptors, during continuous morphine infusion (1.

View Article and Find Full Text PDF

This article reviews sex differences in opiate analgesic and related processes as part of a Special Issue in Hormones and Behavior. The research findings on sex differences are organized in the following manner: (a) systemic opioid analgesia across mu, delta and kappa opioid receptor subtypes and drug efficacy at their respective receptors, (b) effects of the activational and organizational roles of gonadal steroid hormones and estrus phase on systemic analgesic responses, (c) sex differences in spinal opioid analgesia, (d) sex differences in supraspinal opioid analgesia and gonadal hormone effects, (e) the contribution of genetic variance to analgesic sex differences, (f) sex differences in opioid-induced hyperalgesia, (g) sex differences in tolerance and withdrawal-dependence effects, and (h) implications for clinical therapies.

View Article and Find Full Text PDF

Background: Low-dose ketamine behaves as an analgesic in the treatment of acute and chronic pain. To further understand ketamine's therapeutic profile, the authors performed a population pharmacokinetic-pharmacodynamic analysis of the S(+)-ketamine analgesic and nonanalgesic effects in healthy volunteers.

Methods: Ten men and ten women received a 2-h S(+)-ketamine infusion.

View Article and Find Full Text PDF

Although mu-receptor opioids are clinically important analgesics, they can also paradoxically cause hyperalgesia independently of opioid receptor activity, presumably via the action of neuroexcitatory glucoronide metabolites. However, it is unknown whether the commonly used mu-receptor opioid analgesic fentanyl, which is not subject to glucuronidation, can also induce hyperalgesia independently of opioid receptor activity. Thus, here we examined whether fentanyl increases nociception on the tail-withdrawal test in CD-1 mice concurrently treated with the opioid receptor antagonist naltrexone or in opioid receptor triple knock-out mice lacking mu, delta, and kappa opioid receptors.

View Article and Find Full Text PDF

Background: Previous data indicate that morphine-6beta-glucuronide (M6G), a morphine metabolite with analgesic properties, can paradoxically increase pain sensitivity in mice and humans. The authors tested mice and humans for M6G hyperalgesia and assessed the contribution of N-methyl-D-aspartate receptor activity in mice.

Methods: Nociception after acute injection (10 mg/kg) and chronic infusion (1.

View Article and Find Full Text PDF

Chronic exposure to opioids leads to physical dependence, which manifests as the symptoms of drug withdrawal. Interindividual differences in withdrawal symptom severity are well known, and at least partially due to genetic variation. To identify genes contributing to variation in withdrawal severity, we chronically treated 30 strains of the AcB/BcA recombinant congenic mouse strain set, including their A/J and C57BL/6J (B6) progenitors, with morphine for seven days and compared jumping frequencies--a sensitive and widely used index of withdrawal magnitude--during naloxone-precipitated withdrawal (NPW).

View Article and Find Full Text PDF

Although morphine and heroin analgesia is mediated by mu-opioid receptors encoded by the MOR-1 gene, distinct isoforms are involved. Both opioids also induce dependence by acting at mu-opioid receptors, but which variants are utilized is not known. Here, we assayed morphine and heroin analgesia and dependence in mice treated with antisense oligodeoxynucleotides (AO) targeting MOR-1 exons 1-4.

View Article and Find Full Text PDF

It is widely reported that analgesic drugs acting at mu, kappa, and delta opioid-receptors display quantitative and qualitative differences in effect in males and females. These sex-related differences are not restricted to the analgesic/antinociceptive properties of opioids, but are also present in opioid-induced side effects, such as changes in respiration, locomotor activity, learning/memory, addiction, and changes in the cardiovascular system. An increasing number of well-controlled animal and human studies directly examining the issue of sex in the potency of opioids show that, although sex may affect opioid analgesia, the direction and magnitude of sex differences depend on many interacting variables.

View Article and Find Full Text PDF

Heroin and morphine exposure can cause physical dependence, with symptoms manifesting during their withdrawal. Inter-individual differences in symptom frequency during morphine withdrawal are a common finding that, in rodents, is demonstrably attributable to genotype. However, it is not known whether inter-individual differences characterize heroin withdrawal, and whether such variation can be similarly influenced by genotype.

View Article and Find Full Text PDF

Opioid and excitatory amino acid receptors contribute to morphine dependence, but there are no studies of their role in heroin dependence. Thus, mice injected with acute or chronic heroin doses in the present study were pretreated with one of the following selective antagonists: 7-benzylidenenaltrexone (BNTX), naltriben (NTB), nor-binaltorphimine (nor-BNI; delta1, delta2, and kappa opioid receptors, respectively), MK-801, or LY293558 (NMDA and AMPA excitatory amino acid receptors, respectively). Naloxone-precipitated withdrawal jumping frequency, shown here to be a reliable index of heroin dependence magnitude, was reduced by BNTX or NTB in mice injected with both acute and chronic heroin doses.

View Article and Find Full Text PDF

Opioids are extensively used analgesics yet can paradoxically increase pain sensitivity in humans and rodents. This hyperalgesia is extensively conceptualized to be a consequence of opioid receptor activity, perhaps providing an adaptive response to analgesia, and to utilize N-methyl-D-aspartate (NMDA) receptors. These assumptions were tested here in opioid receptor triple knock-out (KO) mice lacking all three genes encoding opioid receptors (mu, delta, and kappa) by comparing their thermal nociceptive responses to the opioids morphine and oxymorphone with those of B6129F(1) controls.

View Article and Find Full Text PDF

The study of genetic variance in opioid receptor antagonism of sucrose and other forms of sweet intake has been limited to reductions in sweet intake in mice that are opioid receptor-deficient or lacking either pre-pro-enkephalin or beta-endorphin. Marked genetic variance in inbred mouse strains has been observed for sucrose intake across a wide array of concentrations in terms of sensitivity, magnitude, percentages of kilocalories consumed as sucrose and compensatory chow intake. The present study examined potential genetic variance in systemic naltrexone's dose-dependent (0.

View Article and Find Full Text PDF

Genetic variation across inbred and outbred mouse strains have been observed for intake of sweet solutions, salts, bitter tastants and a high-fat diet. Our laboratory recently reported marked strain differences in the amounts and/or percentages of kilocalories of sucrose consumed among 11 inbred and one outbred mouse strains exposed to a wide range of nine sucrose concentrations (0.0001-5%) in two-bottle 24-h preference tests.

View Article and Find Full Text PDF
Recent advances in opioid pharmacology.

Curr Opin Anaesthesiol

August 2001

Despite their many and sometimes life-threatening side-effects, opioids in general and morphine in particular are valuable and potent painkillers. This article describes recent developments in sex-related differences in opioid (morphine) pharmacodynamics, morphine metabolites, the nociceptin/orphanin FQ receptor system, acute opioid tolerance and opioid-induced side-effects, such as opioid-induced respiratory depression and itch, and P-glycoprotein modulation of opioid effect.

View Article and Find Full Text PDF

The feeding response following administration of the free fatty acid oxidation inhibitor, mercaptoacetate (MA) is conceptualized as an experimental model of lipoprivation, which may contribute to the understanding of inter-individual differences in the modulation of this homeostatic response. Although variation in the intake of food, water and glucoprivation as well as intake of several nutrients is known to be associated with genetic variation, it is not known whether MA-induced feeding is similarly dependent upon genotype. The present study therefore examined MA-induced feeding in mice of 11 inbred (A/J, AKR/J, BALB/cJ, CBA/J, C3H/HeJ, C57BL6/J, C57BL10/J, DBA/2J, SJL/J, SWR/J, 129P3/J) and one outbred (CD-1) strains across a wide range of previously determined effective MA doses (5, 35, 70, 100 mg/kg) and test times (1-4 h).

View Article and Find Full Text PDF

The feeding response following administration of the anti-metabolic glucose analogue, 2-deoxy-d-glucose (2DG), is conceptualized as an experimental model of glucoprivation, which may contribute to the understanding of inter-individual differences in glucose and carbohydrate intake and, ultimately, obesity. Although variation in the intake of several nutrients as well as food and water are known to be associated with genetic variation, it is not known whether 2DG-induced feeding is similarly genotype dependent. The present study therefore examined 2DG-induced feeding in mice of 11 inbred (A/J, AKR/J, BALB/cJ, CBA/J, C3H/HeJ, C57BL6/J, C57BL10/J, DBA/2J, SJL/J, SWR/J, 129P3/J) and one outbred (CD-1) strains across a wide range of previously determined effective 2-DG doses (200, 400, 600, 800 mg/kg) and test times (1-4 h).

View Article and Find Full Text PDF

Hyperalgesia following chronic morphine treatment is thought to be a response to opioid receptor activation and analgesia and contribute to the development of analgesic tolerance. Here, the relationship between these variables was studied in mice tested for nociceptive sensitivity on the tail-withdrawal test during chronic infusion of various morphine doses. Hyperalgesic onset was preceded by dose-dependent analgesia except for the lowest morphine dose, which caused hyperalgesia 6 h after the start of infusion.

View Article and Find Full Text PDF

Mouse strain differences for intake of sucrose and saccharin have been reported across studies, and some of these differences have been related to variants of the Tas1r3 taste receptor gene. However, several methodological concerns remain, including use of relatively few strains and/or a limited number of palatable concentrations in previous analyses. The present study examined strain differences in sucrose intake among 11 inbred (A/J, AKR/J, BALB/cJ, CBA/J, C3H/HeJ, C57BL6/J, C57BL10/J, DBA/2J, SJL/J, SWR/J, 129P3/J) and one outbred (CD-1) mouse strains across nine different sucrose concentrations (0.

View Article and Find Full Text PDF