Publications by authors named "Kessler McCoy-Simandle"

The interaction between tumor cells and macrophages is crucial in promoting tumor invasion and metastasis. In this study, we examined a novel mechanism of intercellular communication, namely membranous actin-based tunneling nanotubes (TNTs), that occurs between macrophages and tumor cells in the promotion of macrophage-dependent tumor cell invasion. The presence of heterotypic TNTs between macrophages and tumor cells induced invasive tumor cell morphology, which was dependent on EGF-EGFR signaling.

View Article and Find Full Text PDF

Macrophage interactions with other cells, either locally or at distances, are imperative in both normal and pathological conditions. While soluble means of communication can transmit signals between different cells, it does not account for all long distance macrophage interactions. Recently described tunneling nanotubes (TNTs) are membranous channels that connect cells together and allow for transfer of signals, vesicles, and organelles.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that mutants lacking a type II secretion (T2S) system trigger higher cytokine levels like IL-6 in human macrophage-like cells (U937 and THP-1) but not in mouse macrophages.
  • * The T2S system appears to suppress the innate immune response by activating pathways like MAPK and NF-κB less when compared to wild-type infections.
  • * The study showed that the T2S system's dampening effect on IL-6 production is notably affected by proteins like MyD88, TBK1, and TLR2, emphasizing the role of TLR2 in regulating immune responses in human macrophages.
View Article and Find Full Text PDF

Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate.

View Article and Find Full Text PDF

The type II secretion (T2S) system of Legionella pneumophila is required for the ability of the bacterium to grow within the lungs of A/J mice. By utilizing mutants lacking T2S (lsp), we now document that T2S promotes the intracellular infection of both multiple types of macrophages and lung epithelia. Following infection of macrophages, lsp mutants (but not a complemented mutant) elicited significantly higher levels of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), IL-10, IL-8, IL-1β, and MCP-1 within tissue culture supernatants.

View Article and Find Full Text PDF

When cultured in a low-iron medium, Legionella pneumophila secretes a siderophore (legiobactin) that is both reactive in the chrome azurol S (CAS) assay and capable of stimulating the growth of iron-starved legionellae. Using anion-exchange high-pressure liquid chromatography (HPLC), we purified legiobactin from culture supernatants of a virulent strain of L. pneumophila.

View Article and Find Full Text PDF

The rapid emergence of drug-resistant variants of human immunodeficiency virus, type 1 (HIV-1), has limited the efficacy of anti-acquired immune deficiency syndrome (AIDS) treatments, and new lead compounds that target novel binding sites are needed. We have determined the 3.15 A resolution crystal structure of HIV-1 reverse transcriptase (RT) complexed with dihydroxy benzoyl naphthyl hydrazone (DHBNH), an HIV-1 RT RNase H (RNH) inhibitor (RNHI).

View Article and Find Full Text PDF

Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes which has been shown to be critical for parasite-sand fly vector interactions. To provide additional evidence for its importance in transmission, the LPGs from three Leishmania tropica strains that differ in their capability to infect sand flies, were biochemically characterized. One of these strains, ISER/IL/98/LRC-L747, was isolated from a Phlebotomus sergenti female collected in the Judean Desert close to Jerusalem.

View Article and Find Full Text PDF