Publications by authors named "Kesidou E"

Background: The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention.

View Article and Find Full Text PDF

The use of immune checkpoint inhibitors (ICIs) for the treatment of various advanced and aggressive types of malignancy has significantly increased both survival and long-term remission rates. ICIs block crucial inhibitory pathways of the immune system, in order to trigger an aggravated immune response against the tumor. However, this enhanced immune activation leads to the development of numerous immune-related adverse events (irAEs), which may affect any system.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA.

View Article and Find Full Text PDF

Stress-related mental disorders have become increasingly prevalent, thus endangering mental health worldwide. Exploring stress-associated brain alterations is vital for understanding the possible neurobiological mechanisms underlying these changes. Based on existing evidence, the brain endogenous cannabinoid system (ECS) plays a significant role in the stress response, and disruptions in its function are associated with the neurobiology of various stress-related disorders.

View Article and Find Full Text PDF
Article Synopsis
  • The choroid plexus (CP) acts like a monitoring station for the central nervous system (CNS), and changes in its function may play a role in conditions like multiple sclerosis (MS).
  • Studies show that CP becomes enlarged and inflamed in the early stages of MS, including relapsing-remitting MS (RRMS) and other related syndromes, but the exact reasons for these changes are unclear.
  • The CP size is linked to increased brain lesions and worse disease outcomes in early-stage MS but has less correlation with clinical indicators in progressive MS, suggesting that assessments of CP volume are most relevant early in the disease.
View Article and Find Full Text PDF

While cognitive abilities in people with multiple sclerosis (PwMS) have been studied in detail, little is known about linguistic abilities in PwMS and their relation to cognitive impairment. In this cross-sectional explorative study, we aim to investigate the morphosyntactic abilities of PwMS alongside their cognitive performance. Furthermore, we explore the effect of clinical factors, namely, the disease duration and MS type, on the linguistic and cognitive performance of PwMS.

View Article and Find Full Text PDF

Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H.

View Article and Find Full Text PDF

The development and further optimization of the diagnostic criteria for multiple sclerosis (MS) emphasize the establishment of an early and accurate diagnosis. So far, numerous studies have revealed the significance of early treatment administration for MS and its association with slower disease progression and better late outcomes of the disease with regards to disability accumulation. However, according to current research results, both neuroinflammatory and neurodegenerative processes may exist prior to symptom initiation.

View Article and Find Full Text PDF

Over the past three years, humanity faced the abrupt spread of COVID-19, responsible for a worldwide health crisis. Initially, it was believed that individuals with chronic disorders, including multiple sclerosis, were more likely to be infected and suffer a worse degree of COVID-19 disease. Therefore, data with regard to COVID-19 disease outcomes in these populations may provide additional insight with regard to the management of chronic diseases during viral pandemics.

View Article and Find Full Text PDF

Secondary demyelinating diseases comprise a wide spectrum group of pathological conditions and may either be attributed to a disorder primarily affecting the neurons or axons, followed by demyelination, or to an underlying condition leading to secondary damage of the myelin sheath. In the elderly, primary demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis, are relatively uncommon. However, secondary causes of CNS demyelination may often occur and in this case, extensive diagnostic workup is usually needed.

View Article and Find Full Text PDF

Background: Besides disease-modifying therapies, various pharmacologic agents are frequently prescribed to people with multiple sclerosis (MS) for symptom treatment and for comorbid conditions. The present study aims to investigate the types and frequencies of agents prescribed to people with MS in Greece using records from the nationwide digital prescription database.

Methods: Prescription records for 21,218 people (65.

View Article and Find Full Text PDF

Neuroglial cells, and especially astrocytes, constitute the most varied group of central nervous system (CNS) cells, displaying substantial diversity and plasticity during development and in disease states. The morphological changes exhibited by astrocytes during the acute and chronic stages following CNS injury can be characterized more precisely as a dynamic continuum of astrocytic reactivity. Different subpopulations of reactive astrocytes may be ascribed to stages of degenerative progression through their direct pathogenic influence upon neurons, neuroglia, the blood-brain barrier, and infiltrating immune cells.

View Article and Find Full Text PDF

The process of ageing is characteristic of multicellular organisms associated with late stages of the lifecycle and is manifested through a plethora of phenotypes. Its underlying mechanisms are correlated with age-dependent diseases, especially neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) that are accompanied by social and financial difficulties for patients. Over time, people not only become more prone to neurodegeneration but they also lose the ability to trigger pivotal restorative mechanisms.

View Article and Find Full Text PDF

The current study aimed to investigate the effect of the combined Nd-Er: YAG laser on the surgical treatment of peri-implantitis by evaluating clinical markers and biomarkers of bone loss (RANKL/OPG). Twenty (20) patients having at least 1 implant diagnosed with peri-implantitis were randomly assigned to two groups for surgical treatment. In the test group (n = 10), Er: YAG laser was used for granulation tissue removal and implant surface decontamination, while Nd: YAG laser was employed for deep tissue decontamination and biomodulation.

View Article and Find Full Text PDF

Microglia belong to tissue-resident macrophages of the central nervous system (CNS), representing the primary innate immune cells. This cell type constitutes ~7% of non-neuronal cells in the mammalian brain and has a variety of biological roles integral to homeostasis and pathophysiology from the late embryonic to adult brain. Its unique identity that distinguishes its "glial" features from tissue-resident macrophages resides in the fact that once entering the CNS, it is perennially exposed to a unique environment following the formation of the blood-brain barrier.

View Article and Find Full Text PDF

Rare diseases (RDs) are life-threatening or chronically impairing conditions that affect about 6% of the world's population. RDs are often called 'orphan' diseases, since people suffering from them attract little support from national health systems. The aim of this study is to describe the clinical characteristics of, and the available laboratory examinations for, patients who were hospitalized in a tertiary referral center and finally received a diagnosis associated with a Rare Neurological Disease (RND).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) with a profound neurodegenerative component early in the disease pathogenesis. Age is a factor with a well-described effect on the primary disease phenotype, namely, the relapsing-remitting vs. the primary progressive disease.

View Article and Find Full Text PDF

Hypoxic ischemic (HI) brain injury that occurs during neonatal period has been correlated with severe neuronal damage, behavioral deficits and infant mortality. Previous evidence indicates that N-acetylcysteine (NAC), a compound with antioxidant action, exerts a potential neuroprotective effect in various neurological disorders including injury induced by brain ischemia. The aim of the present study was to investigate the role of NAC as a potential therapeutic agent in a rat model of neonatal HI brain injury and explore its long-term behavioral effects.

View Article and Find Full Text PDF

Biomarker research across the health-to-disease continuum is being increasingly applied. We applied blood-based metabolomics in order to identify patient clusters with a first demyelinating episode, and explored the prognostic potential of the method by thoroughly characterizing each cluster in terms of clinical, laboratory and MRI markers of established prognostic potential for Multiple Sclerosis (MS). Recruitment consisted of 11 patients with Clinically Isolated Syndrome (CIS), 37 patients with a first demyelinating episode in the context of Relapsing-Remitting MS (RRMS) and 11 control participants.

View Article and Find Full Text PDF
Article Synopsis
  • - RNA editing is an epitranscriptomic process involving ADAR and APOBEC enzymes that can alter RNA and plays a significant role in various diseases, including autoimmune diseases like multiple sclerosis (MS).
  • - The study focused on its impact in a model called experimental autoimmune encephalomyelitis (EAE), which mimics aspects of MS, by analyzing microglia data and testing transgenic mice lacking APOBEC-1.
  • - Findings revealed reduced RNA editing events during disease progression in knock-out mice, leading to worse EAE symptoms, suggesting RNA editing regulates mechanisms that may apply to MS and other neurodegenerative disorders.
View Article and Find Full Text PDF

The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods.

View Article and Find Full Text PDF

Ocrelizumab is a B-cell-depleting monoclonal antibody approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) and active primary progressive MS (aPPMS). This prospective, uncontrolled, open-label, observational study aimed to assess the efficacy of ocrelizumab in patients with aPPMS and to dissect the clinical, radiological and laboratory attributes of treatment response. In total, 22 patients with aPPMS followed for 24 months were included.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by inflammation and neurodegeneration. The most prominent clinical features include visual loss and sensorimotor symptoms and mainly affects those of young age. Some of the factors affecting its pathogenesis are genetic and/or environmental including viruses, smoking, obesity, and nutrition.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is a basic and reliable model used to study clinical and pathological hallmarks of multiple sclerosis (MS) in rodents. Several studies suggest neural precursor cells (NPCs) as a significant research tool while reporting that transplanted NPCs are a promising therapeutic approach to treating neurological disorders, such as MS. The main objective was to approach a preclinical, in vivo scenario of oligodendrogenesis with NPCs, targeting the main chronic demyelinated lumbosacral milieu of EAE, via the least invasive delivery method which is lumbar puncture.

View Article and Find Full Text PDF