Western diet (WD) consumption during early life developmental periods is associated with impaired memory function, particularly for hippocampus (HPC)-dependent processes. We developed an early life WD rodent model associated with long-lasting HPC dysfunction to investigate the neurobiological mechanisms mediating these effects. Rats received either a cafeteria-style WD (ad libitum access to various high-fat/high-sugar foods; CAF) or standard healthy chow (CTL) during the juvenile and adolescent stages (postnatal days 26-56).
View Article and Find Full Text PDFEarly life Western diet (WD) consumption leads to impaired memory function, particularly for processes mediated by the hippocampus. However, the precise critical developmental window(s) during which WD exposure negatively impacts hippocampal function are unknown. Here, we exposed male and female rats to a WD model involving free access to a variety of high-fat and/or high-sugar food and drink items during either the early-adolescent period (postnatal days [PN] 26-41; WD-EA) or late-adolescent period (PN 41-56; WD-LA).
View Article and Find Full Text PDFEarly life Western diet (WD) consumption leads to impaired memory function, particularly for processes mediated by the hippocampus. However, the precise critical developmental window(s) during which WD exposure negatively impacts hippocampal function are unknown. Here, we exposed male and female rats to a WD model involving free access to a variety of high-fat and/or high-sugar food and drink items during either the early-adolescent period (postnatal days [PN] 26-41; WD-EA) or late-adolescent period (PN 41-56; WD-LA).
View Article and Find Full Text PDFThe ability to encode and retrieve meal-related information is critical to efficiently guide energy acquisition and consumption, yet the underlying neural processes remain elusive. Here we reveal that ventral hippocampus (HPCv) neuronal activity dynamically elevates during meal consumption and this response is highly predictive of subsequent performance in a foraging-related spatial memory task. Targeted recombination-mediated ablation of HPCv meal-responsive neurons impairs foraging-related spatial memory without influencing food motivation, anxiety-like behavior, or escape-mediated spatial memory.
View Article and Find Full Text PDFWestern diet (WD) consumption during development yields long-lasting memory impairments, yet the underlying neurobiological mechanisms remain elusive. Here we developed an early life WD rodent model to evaluate whether dysregulated hippocampus (HPC) acetylcholine (ACh) signaling, a pathology associated with memory impairment in human dementia, is causally-related to WD-induced cognitive impairment. Rats received a cafeteria-style WD (access to various high-fat/high-sugar foods; CAF) or healthy chow (CTL) during the juvenile and adolescent periods (postnatal days 26-56).
View Article and Find Full Text PDFThe lateral hypothalamic area (LHA) integrates homeostatic processes and reward-motivated behaviors. Here we show that LHA neurons that produce melanin-concentrating hormone (MCH) are dynamically responsive to both food-directed appetitive and consummatory processes in male rats. Specifically, results reveal that MCH neuron Ca activity increases in response to both discrete and contextual food-predictive cues and is correlated with food-motivated responses.
View Article and Find Full Text PDFCerebrovascular dysfunction is a hallmark of Alzheimer's disease (AD) that is linked to cognitive decline. However, blood-brain barrier (BBB) disruption in AD is focal and requires sensitive methods to detect extravasated blood proteins and vasculature in large brain volumes. Fibrinogen, a blood coagulation factor, is deposited in AD brains at sites of BBB disruption and cerebrovascular damage.
View Article and Find Full Text PDFOxytocin potently reduces food intake and is a potential target system for obesity treatment. A better understanding of the behavioral and neurobiological mechanisms mediating oxytocin's anorexigenic effects may guide more effective obesity pharmacotherapy development. The present study examined the effects of central (lateral intracerebroventricular [ICV]) administration of oxytocin in rats on motivated responding for palatable food.
View Article and Find Full Text PDFMelanin-concentrating hormone (MCH) is an orexigenic neuropeptide produced in the lateral hypothalamus and zona incerta that increases food intake. The neuronal pathways and behavioral mechanisms mediating the orexigenic effects of MCH are poorly understood, as is the extent to which MCH-mediated feeding outcomes are sex-dependent. Here we investigate the hypothesis that MCH-producing neurons act in the nucleus accumbens shell (ACBsh) to promote feeding behavior and motivation for palatable food in a sex-dependent manner.
View Article and Find Full Text PDFCerebrovascular alterations are a key feature of Alzheimer's disease (AD) pathogenesis. However, whether vascular damage contributes to synaptic dysfunction and how it synergizes with amyloid pathology to cause neuroinflammation and cognitive decline remain poorly understood. Here, we show that the blood protein fibrinogen induces spine elimination and promotes cognitive deficits mediated by CD11b-CD18 microglia activation.
View Article and Find Full Text PDF