This study compared the photosynthetic performance and the global gene expression of the winter hardy wheat Triticum aestivum cv Norstar grown under non-acclimated (NA) or cold-acclimated (CA) conditions at either ambient CO2 or elevated CO2. CA Norstar maintained comparable light-saturated and CO2-saturated rates of photosynthesis but lower quantum requirements for PSII and non-photochemical quenching relative to NA plants even at elevated CO2. Neither NA nor CA plants were sensitive to feedback inhibition of photosynthesis at elevated CO2.
View Article and Find Full Text PDFCold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants.
View Article and Find Full Text PDF