Chronic thromboembolic pulmonary hypertension (CTEPH) is a debilitating but potentially reversible complication of chronic pulmonary thromboembolic disease characterized by progressive right heart dysfunction secondary to pulmonary arterial stenosis or occlusion. Balloon pulmonary angioplasty (BPA) has recently emerged as an alternative intervention for non-surgical candidates with CTEPH. Modern reperfusion angioplasty techniques relieve sequela of chronic pulmonary hypertension, ameliorate right ventricular failure, and improve functional status.
View Article and Find Full Text PDFPersons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients.
View Article and Find Full Text PDFAlthough nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo.
View Article and Find Full Text PDFNeurofibromatosis type 2 (NF2) is an autosomal dominant genetic disorder resulting from germline mutations in the NF2 gene. Bilateral vestibular schwannomas, tumors on cranial nerve VIII, are pathognomonic for NF2 disease. Furthermore, schwannomas also commonly develop in other cranial nerves, dorsal root ganglia and peripheral nerves.
View Article and Find Full Text PDFNeurofibromatosis type 1 (NF1) predisposes individuals to the development of juvenile myelomonocytic leukemia (JMML), a fatal myeloproliferative disease (MPD). In genetically engineered murine models, nullizygosity of Nf1, a tumor suppressor gene that encodes a Ras-GTPase-activating protein, results in hyperactivity of Raf/Mek/Erk in hematopoietic stem and progenitor cells (HSPCs). Activated Erk1/2 phosphorylate kinases and transcription factors with myriad mitogenic roles in diverse cell types.
View Article and Find Full Text PDFParathyroid hormone-related protein (PTHrP) is the causative factor of the paraneoplastic syndrome humoral hypercalcemia of malignancy (HHM) and it also contributes to osteolytic metastases, both of which are common complications of squamous carcinomas of the lung. Inhibition of autocrine epidermal growth factor receptor (EGFR) signaling has been shown to reduce plasma calcium and PTHrP concentrations in two lung squamous cell carcinoma xenograft models of HHM. The purpose of this study was to investigate the mechanism by which EGFR is activated and stimulates PTHrP gene expression in lung squamous carcinoma cell lines.
View Article and Find Full Text PDFIn vertebrates, specific regions of skin crucial for interaction with and manipulation of elements in the environment are characterized by specialized epidermis. Regions of specialized epidermis show distinct patterns of cellular differentiation and express specific keratins that provide an increased ability to withstand mechanical strain. The nipple, which must endure the mechanical strain of nursing, is a type of specialized epidermis.
View Article and Find Full Text PDFIn developing organs, parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor (PPR) signaling inhibits proliferation and differentiation of mesenchyme-derived cell types resulting in control of morphogenic events. Previous studies using PPR agonists and antagonists as well as transgenic overexpression of the PPR ligand PTHrP have suggested that this ligand receptor combination might regulate the anagen to catagen transition of the hair cycle. To further understand the precise role of PTHrP and the PPR in the hair cycle, we have evaluated hair growth in the traditional K14-PTHrP (KrP) and an inducible bitransgenic PTHrP mice.
View Article and Find Full Text PDF