Publications by authors named "Kerwin Kwek Zeming"

Cytokines, crucial in immune modulation, impact disease progression when their secretion is dysregulated. Existing methods for profiling cytokine secretion suffer from time-consuming and labor-intensive processes and often fail to capture the dynamic nature of immune responses. Here, iSECRETE, an integrated platform that enables synchronous cell activation, wash-free, and target-responsive protein detection for single-cell IFN-γ cytokine secretion analysis within 30 min at room temperature is presented.

View Article and Find Full Text PDF

The growing interest in regenerative medicine has opened new avenues for novel cell therapies using stem cells. Bone marrow aspirate (BMA) is an important source of stromal mesenchymal stem cells (MSCs). Conventional MSC harvesting from BMA relies on archaic centrifugation methods, often leading to poor yield due to osmotic stress, high centrifugation force, convoluted workflow, and long experimental time (∼2-3 hours).

View Article and Find Full Text PDF

Enzymatic secretion of immune cells (leukocytes) plays a dominant role in host immune responses to a myriad of biological triggers, including infections, cancers, and cardiovascular diseases. Current tools to probe these leukocytes inadequately profile these vital biomarkers; the need for sample preprocessing steps of cell lysis, labeling, washing, and pipetting inevitably triggers the cells, changes its basal state, and dilutes the individual cell secretion in bulk assays. Using a fully integrated system for multiplexed profiling of native immune single-cell enzyme secretion from 50 μL of undiluted blood, we eliminate sample handling.

View Article and Find Full Text PDF

Disease manifestation and severity from acute infections are often due to hyper-aggressive host immune responses which change within minutes. Current methods for early diagnosis of infections focus on detecting low abundance pathogens, which are time-consuming, of low sensitivity, and do not reflect the severity of the pathophysiology appropriately. The approach here focuses on profiling the rapidly changing host inflammatory response, which in its over-exuberant state, leads to sepsis and death.

View Article and Find Full Text PDF

In vitro erythroid cultures from human hematopoietic stem cells produce immature red blood cells (RBCs) called reticulocytes, which are important for RBCs production, and are widely used in scientific studies of malaria pathology, hematological diseases and protein translation. However, in vitro reticulocyte cultures contain expelled cell nuclei and erythroblasts as undesirable by-products and current purification methods such as density gradient centrifugation and fluorescence-activated cell sorting (FACS) are not optimal for integrated bioprocessing and downstream therapeutic applications. Developments in Dean flow fractionation (DFF) and deterministic lateral displacement (DLD) microfluidic sorting methods are ideal alternatives due to label-free size sorting, throughput scalability and low manufacturing cost.

View Article and Find Full Text PDF

Disease diagnostics requires detection and quantification of nano-sized bioparticles including DNA, proteins, viruses, and exosomes. Here, a fluorescent label-free method for sensitive detection of bioparticles is explored using a pillar array with micrometer-sized features in a deterministic lateral displacement (DLD) device. The method relies on measuring changes in size and/or electrostatic charges of 1 µm polymer beads due to the capture of target bioparticles on the surface.

View Article and Find Full Text PDF

Nanoparticles have been widely implemented for healthcare and nanoscience industrial applications. Thus, efficient and effective nanoparticle separation methods are essential for advancement in these fields. However, current technologies for separation, such as ultracentrifugation, electrophoresis, filtration, chromatography, and selective precipitation, are not continuous and require multiple preparation steps and a minimum sample volume.

View Article and Find Full Text PDF

Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size.

View Article and Find Full Text PDF

Nanoparticles exhibit size-dependent properties which make size-selective purification of proteins, DNA or synthetic nanoparticles essential for bio-analytics, clinical medicine, nano-plasmonics and nano-material sciences. Current purification methods of centrifugation, column chromatography and continuous-flow techniques suffer from particle aggregation, multi-stage process, complex setups and necessary nanofabrication. These increase process costs and time, reduce efficiency and limit dynamic range.

View Article and Find Full Text PDF

Particle sorting methods in microfluidic platforms are gaining momentum for various biomedical applications. Bioparticles are found in different shapes and sizes. However, conventional separation techniques are mainly designed for separation of spherical particles.

View Article and Find Full Text PDF

Most bioparticles, such as red blood cells and bacteria, are non-spherical in shape. However, conventional microfluidic separation devices are designed for spherical particles. This poses a challenge in designing a separation device for non-spherical bioparticles, as the smallest dimension of the bioparticle has to be considered, which increases fabrication challenges and decreases the throughput.

View Article and Find Full Text PDF