Publications by authors named "Kertu Tiirik"

Engineered nanoparticles, including silver nanoparticles (AgNPs), are released into the environment mainly through wastewater treatment systems. Knowledge of the impact of AgNPs on the abundance and removal efficiency of antibiotic resistance genes (ARGs) in wastewater treatment facilities, including constructed wetlands (CWs), is essential in the context of public health. This study evaluated the effect of increased (100-fold) collargol (protein-coated AgNPs) and ionic Ag in municipal wastewater on the structure, abundance, and removal efficiency of the antibiotic resistome, integron-integrase genes, and pathogens in a hybrid CW using quantitative PCR and metagenomic approaches.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) threaten human and ecosystem health, and are among the most widely used engineered nanomaterials that reach wastewater during production, usage, and disposal phases. This study evaluated the effect of a 100-fold increase in collargol (protein-coated AgNP) and Ag ions concentrations in municipal wastewater on the microbial community composition of the filter material biofilms (FMB) and the purification efficiency of the hybrid treatment system consisting of vertical (VF) and horizontal (HF) subsurface flow filters. We found that increased amounts of collargol and AgNO in wastewater had a modest effect on the prokaryotic community composition in FMB and did not significantly affect the performance of the studied system.

View Article and Find Full Text PDF

The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, structure, dynamics, and metabolic potential for oil hydrocarbon degradation in oil-contaminated Arctic seawater. The combination of amplicon-based and shotgun sequencing, together with the integration of genome-resolved metagenomics and omics data, was applied to assess microbial community structure and metabolic properties in naphthenic crude oil-amended microcosms.

View Article and Find Full Text PDF

The residues from human environments often contain antibiotics and antibiotic resistance genes (ARGs) that can contaminate natural environments; the clearest consequence of that is the selection of antibiotic-resistant bacteria. The Baltic Sea is the second largest isolated brackish water reservoir on Earth, serving as a drainage area for people in 14 countries, which differ from one another in antibiotic use and sewage treatment policies. The aim of this study was to characterize the bacterioplankton structure and quantify ARGs (tetA, tetB, tetM, ermB, sul1, blaSHV, and ampC) within the bacterioplankton community of the Baltic Sea.

View Article and Find Full Text PDF

Municipal wastewater treatment is one of the pathways by which antibiotic resistance genes from anthropogenic sources are introduced into natural ecosystems. This study examined the abundance and proportion dynamics of seven antibiotic resistance genes in the wetland media biofilm and in the influent and effluent of parallel horizontal subsurface flow mesocosm cells of a newly established hybrid constructed wetland treating municipal wastewater. The targeted genes (tetA, tetB, tetM, ermB, sul1, ampC, and qnrS) encode resistance to major antibiotic classes such as tetracyclines, macrolides, sulfonamides, penicillins, and fluoroquinolones, respectively.

View Article and Find Full Text PDF