Rice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) implies substantial yield loss to rice. In times of climate change, increasing temperatures are observed and further acceleration is expected worldwide.
View Article and Find Full Text PDFAround year 1890, the technology of using metallic iron (Fe) for safe drinking water provision was already established in Europe. The science and technology to manufacture suitable Fe materials were known and further developed in this period. Scientists had then developed skills to (i) explore the suitability of individual Fe materials (e.
View Article and Find Full Text PDFThe global temperatures are predicted to rise due to climate change. However, knowledge on the mechanisms underlying the effect of high temperature (HT) on plant pathogen interaction is limited. We investigated the effect of elevated temperature on host phenotypic, biochemical and gene expression patterns in the rice-Magnaporthe oryzae (Mo) pathosystem using two genetic backgrounds, Co39 (Oryzae sativa-indica) and LTH (O.
View Article and Find Full Text PDFTemperature changes have the potential to alter the incidence and severity of plant disease epidemics and pressures, as well as to reshape the co-evolutionary relationships between plants and pathogens. However, the molecular basis of temperature modulation of pathogenicity of plant pathogens is still unclear. Here, we studied the effect of temperature on biomass of Magnaporthe oryzae in planta using qPCR.
View Article and Find Full Text PDFRice bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is responsible for substantial yield loss worldwide. Host resistance remains the most feasible control measure.
View Article and Find Full Text PDFRice blast, caused by Magnaporthe oryzae, is one of the emergent threats to rice production in East Africa (EA), where little is known about the population genetics and pathogenicity of this pathogen. We investigated the genetic diversity and mating type (MAT) distribution of 88 isolates of M. oryzae from EA and representative isolates from West Africa (WA) and the Philippines (Asia) using amplified fragment length polymorphism markers and mating-type-specific primer sets.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
July 2013
Several pectolytic bacterial strains, mainly isolated from monocotyledonous plants and previously identified as Pectobacterium carotovorum, were thought to belong to a novel species after several taxonomic analyses including DNA-DNA hybridization. In 16S rRNA gene sequence analyses, these strains had a similarity of >97.9 % to the 16S rRNA gene sequence of strains representing six other pectobacterial species and subspecies.
View Article and Find Full Text PDFPolygalacturonases (PGs) of wild-type and non-virulent phenotype conversion mutant (PC) strains of Ralstonia solanacearum were compared by investigating their activities and their inhibition by polygalacturonase-inhibiting proteins (PGIPs) from tomato stems. In cultures of wild-type strain ToUdk2, slimy (s), retarded slimy (rs) and non-slimy (ns) colonies appeared. The conversion of the 's' into the 'rs' colony form coincided with the beginning of PG production.
View Article and Find Full Text PDFProteomics approach was used to elucidate the molecular interactions taking place at the stem cell wall level when tomato species were inoculated with Ralstonia solanacearum, a causative agent of bacterial wilt. Cell wall proteins from both resistant and susceptible plants before and after the bacterial inoculation were extracted from purified cell wall with salt buffers and separated with 2-D IEF/SDS-PAGE and with 3-D IEF/SDS/SDS-PAGE for basic proteins. The gels stained with colloidal Coomassie revealed varied abundance of protein spots between two species (eight proteins in higher abundance in resistant and six other in susceptible).
View Article and Find Full Text PDFA comparative proteome analysis was initiated to systematically investigate the physiological response of tomato (Solanum lycopersicum) to infection with Ralstonia solanacearum, causal agent of bacterial wilt. Plants of the susceptible tomato recombinant inbred line NHG3 and the resistant NHG13 were either infected or not infected with R. solanacearum and subsequently used for proteome analysis.
View Article and Find Full Text PDFAiming at improving classification and taxonomy of Gram-negative phytopathogenic bacteria, we studied the structure of the lipopolysaccharide of Ralstonia solanacearum. Mild acid hydrolysis of the lipopolysaccharide of strain Toudk-2 followed by gel chromatography resulted in an O-polysaccharide and two oligosaccharide fractions. The smallest-size oligosaccharide fraction was studied by sugar analysis, high-resolution electrospray ionization mass spectrometry, and, after fractionation by anion-exchange chromatography on HiTrap Q, by one- and two-dimensional (1)H and (13)C NMR spectroscopy.
View Article and Find Full Text PDFThe following structure of the O-polysaccharide of the phytopathogenic bacterium Xanthomonas cassavae GSPB 2437 was determined by sugar analysis along with 1H and 13C NMR spectroscopy: [structure: see text].
View Article and Find Full Text PDF