Publications by authors named "Kerstin WeiSS"

Serum response factor (SRF) is an essential transcription factor for brain development and function. Here, we explored how an SRF cofactor, the actin monomer-sensing myocardin-related transcription factor MRTF, is regulated in mouse cortical neurons. We found that MRTF-dependent SRF activity in vitro and in vivo was repressed by cyclase-associated protein CAP1.

View Article and Find Full Text PDF

The proper development and function of neuronal circuits rely on a tightly regulated balance between excitatory and inhibitory (E/I) synaptic transmission, and disrupting this balance can cause neurodevelopmental disorders, for example, schizophrenia. MicroRNA-dependent gene regulation in pyramidal neurons is important for excitatory synaptic function and cognition, but its role in inhibitory interneurons is poorly understood. Here, we identify as a regulator of short-term memory and inhibitory synaptic transmission in the mouse hippocampus.

View Article and Find Full Text PDF

microRNA-dependent post-transcriptional control represents an important gene-regulatory layer in post-mitotic neuronal development and synaptic plasticity. We recently identified the brain-enriched miR-138 as a negative regulator of dendritic spine morphogenesis in rat hippocampal neurons. A potential involvement of miR-138 in cognition is further supported by a recent GWAS study on memory performance in a cohort of aged (>60 years) individuals.

View Article and Find Full Text PDF

The vast majority of the mammalian genome is transcribed, generating a wealth of transcripts that do not have protein-coding potential. These non-coding RNAs (ncRNAs) have emerged as major mediators of compartmentalized gene expression with many important regulatory functions, and are therefore at the focus of biological research in many cellular systems. The expression of ncRNAs is particularly multifaceted in neurons, as they seem to be expressed in a highly cell-type and activity-dependent manner.

View Article and Find Full Text PDF

Dendritic mRNA transport and local translation in the postsynaptic compartment play an important role in synaptic plasticity, learning and memory. Local protein synthesis at the synapse has to be precisely orchestrated by a plethora of factors including RNA binding proteins as well as microRNAs, an extensive class of small non-coding RNAs. By binding to complementary sequences in target mRNAs, microRNAs fine-tune protein synthesis and thereby represent critical regulators of gene expression at the post-transcriptional level.

View Article and Find Full Text PDF

Protein diffusion in lipid membranes is a key aspect of many cellular signaling processes. To quantitatively describe protein diffusion in membranes, several competing theoretical models have been proposed. Among these, the Saffman-Delbrück model is the most famous.

View Article and Find Full Text PDF

Specific microRNAs (miRNAs), including miR-134, localize to neuronal dendrites, where they control synaptic protein synthesis and plasticity. However, the mechanism of miRNA transport is unknown. We found that the neuronal precursor-miRNA-134 (pre-miR-134) accumulates in dendrites of hippocampal neurons and at synapses in vivo.

View Article and Find Full Text PDF

This chapter introduces into the technique of dual-focus fluorescence correlation spectroscopy or 2fFCS. In 2fFCS, the fluorescence signals generated in two laterally shifted but overlapping focal regions are auto- and crosscorrelated. The resulting correlation curves are then used to determine diffusion coefficients of fluorescent molecules or particles in solutions or membranes.

View Article and Find Full Text PDF

We present an overview of the application of dual-focus fluorescence correlation spectroscopy (2f-FCS) for the measurement of diffusion coefficients within free-standing lipid membranes. The first part gives a detailed theoretical analysis of the expected performance of 2f-FCS, in particular about the sensitivity of the method with regard to precise focus position and to aberrations caused by refractive index mismatch or cover slide thickness deviation. After describing the experimental details of the 2f-FCS setup and the preparation of free-standing black lipid membranes (BLMs), we apply the method to study the diffusion of lipids within BLMs as a function of lipid composition and of ion valency and ionic strength of the surrounding buffer.

View Article and Find Full Text PDF

Remote temperature measurements in microfluidic devices with micrometer spatial resolution are important for many applications in biology, biochemistry and chemistry. The most popular methods use the temperature-dependent fluorescence lifetime of Rhodamine B, or the temperature-dependent size of thermosensitive materials such as microgel particles. Here, we use the recently developed method of dual-focus fluorescence correlation spectroscopy (2fFCS) for measuring the absolute diffusion coefficient of small fluorescent molecules at nanomolar concentrations and show how these data can be used for remote temperature measurements on a micrometer scale.

View Article and Find Full Text PDF
Article Synopsis
  • A new calibration technique is introduced to accurately measure the shear distance of a Nomarski Differential Interference Contrast prism, critical for microscopy and fluorescence correlation spectroscopy.
  • The shear distance directly affects spatial resolution in microscopy and the determination of diffusion coefficients in spectroscopy.
  • This technique combines fluorescence correlation spectroscopy and dynamic light scattering, is user-friendly, and achieves measurements with nanometer precision.
View Article and Find Full Text PDF