Publications by authors named "Kerstin Stute"

Prestin is the motor protein of the outer hair cells of the organ of Corti and a key factor in ensuring a high sensitivity level of mammalian hearing. In the present study, we examined the effects of increased extracellular potassium (K(+)) concentration on the expression of prestin mRNA and the transcription factors Gata-3 and Carf in the organotypic culture of the organ of Corti of newborn rats. Mannitol and NaCl were used to analyze possible effects of hyperosmotic stress or ion-specific changes, respectively.

View Article and Find Full Text PDF

Transcription factors (TFs) have a central role to play in regulating gene expression. To analyze the co-expression patterns of selected TFs with the motor protein prestin of the outer hair cells, we applied an real-time PCR approach combining several kinds of information: (i) expression changes during postnatal development, (ii) expression changes by exposure of organotypic cultures of the organ of Corti to factors which significantly affect prestin expression [thyroid hormone (T4), retinoic acid (RA), butyric acid (BA), increased KCl concentration] and (iii) changes along the apical-basal gradient. We found that the mRNA levels of the TF Brn-3c (Pou4f3), a member of the POU family, are significantly associated with the regulation of prestin during postnatal development and in cultures supplemented with T4 (0.

View Article and Find Full Text PDF

Prestin is the motor protein of the outer hair cells of the organ of Corti and a key factor in ensuring a high level of sensitivity of mammalian hearing. The factors that influence prestin expression are still largely unknown. We studied the effects of the application of retinoic acid, a ligand of a nuclear receptor, and of butyric acid, an inhibitor of histone deacetylase activity, on the expression of mRNA of prestin and Gata-3 in the organotypic culture of the organ of Corti of newborn rats using RT-PCR.

View Article and Find Full Text PDF

Based on observations that mutations of GATA-3 are responsible for the HDR-syndrome (hypoparathyroidism, deafness, renal defects) and that GATA-transcription factors have an important role to play in inner ear development, we hypothesized that these transcription factors may be involved in regulatory changes of prestin transcription. To prove this, we examined in parallel the expression of mRNA of prestin and Gata-3,-2 and Gata-1 in the organ of Corti during early postnatal development of rats and in organotypic cultures. Remarkable relations are observed between prestin and Gata-3,-2 expression in organ of Corti preparations in vivo and in vitro: (i) Gata-3,-2 expression display similar apical-basal gradients as prestin mRNA levels.

View Article and Find Full Text PDF