Endowing materials surface with cell-adhesive properties is a common strategy in biomaterial research and tissue engineering. This is particularly interesting for already approved polymers that have a long standing use in medicine because these materials are well characterized and legal issues associated with the introduction of newly synthesized polymers may be avoided. Polytetrafluoroethylene (PTFE) is one of the most frequently employed materials for the manufacturing of vascular grafts but the polymer lacks cell adhesion promoting features.
View Article and Find Full Text PDFMany biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished.
View Article and Find Full Text PDFThe review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e.
View Article and Find Full Text PDFTwo different aliphatic polycarbonates were synthesised from CO(2) and the respective epoxides. Poly(propyl carbonate) (PPC) was prepared by heterogeneous catalysis with zinc glutarate. Poly(cyclohexyl carbonate) (PCHC) was prepared via living copolymerisation homogeneously catalysed by a 3-amino-2-cyanoimidoacrylate zinc acetate complex and subjected to electrospinning.
View Article and Find Full Text PDF