Publications by authors named "Kerstin Moehring"

Forming processes influence the mechanical properties of manufactured workpieces in general and by means of forming-induced initial damage in particular. The effect of the latter on performance capability is the underlying research aspect for the investigations conducted. In order to address this aspect, fatigue tests under compressive, tensile and compressive-tensile loads were set-up with discrete block-by-block increased amplitudes and constant amplitudes, and performed up to fracture or distinct lifetimes.

View Article and Find Full Text PDF

Forming technology and in particular cold forward rod extrusion is one of the key manufacturing technologies with regard to the production of shafts. The selection of process parameters determines the global and local material properties. This particularly implies forming-induced initial damage in representation of pores.

View Article and Find Full Text PDF

The ongoing studies of the influence of internal defects on fatigue strength of additively manufactured metals adopted an internal crack or notch-like model at which the threshold stress intensity factor is the driving mechanism of fatigue failure. The current article highlights a shortcoming of this approach and offers an alternative based on X-ray microcomputed tomography and cyclic plasticity with a hybrid formulation of Chaboche and Armstrong-Frederick material laws. The presented tessellation and geometrical transformation scheme enabled a significantly more realistic morphological representation of internal defects that yielded a cyclic strain within 2% of the experimental values.

View Article and Find Full Text PDF