Apoptosis-stimulating proteins of p53 (ASPPs) are a family of proteins that modulate key tumor suppressor pathways via direct interaction with p53. Deregulation of these proteins promotes cancer development and impairs sensitivity to systemic (chemo)therapy and radiation. In this study, we describe that the inhibitor of ASPP (iASPP) is frequently highly expressed in acute myeloid leukemia (AML) and that overexpression correlates with a poor clinical outcome.
View Article and Find Full Text PDFASPP1 (PPP1R13B) belongs to a family of p53-binding proteins and enhances apoptosis by stimulation of p53-transactivation of selected proapoptotic target genes. It is preferentially expressed in hematopoietic stem cells (HSC) and together with p53 preserves the genomic integrity of the HSC pool. Consequently, dysfunction of ASPP1 has been associated with malignant transformation and development of acute lymphoblastic leukemias and lymphomas - whereas methylation of the promoter region is linked to reduced transcription and ultimately attenuated expression of ASPP1.
View Article and Find Full Text PDFBMC Cancer
July 2022
Background: Metastatic soft tissue sarcoma (STS) are a heterogeneous group of malignancies which are not curable with chemotherapy alone. Therefore, understanding the molecular mechanisms of sarcomagenesis and therapy resistance remains a critical clinical need. ASPP2 is a tumor suppressor, that functions through both p53-dependent and p53-independent mechanisms.
View Article and Find Full Text PDFAlternative splicing is a common physiologic mechanism to generate numerous distinct gene products from one gene locus, which can result in unique gene products with differing important functional outcomes depending on cell context. Aberrant alternative splicing is a hallmark of cancer that can contribute to oncogenesis and aggressiveness of the disease as well as resistance to therapy. However, aberrant splicing might also result in novel targets for cancer therapy.
View Article and Find Full Text PDFBackground: Apoptosis-stimulating Protein of TP53-2 (ASPP2) is a tumor suppressor enhancing TP53-mediated apoptosis via binding to the TP53 core domain. TP53 mutations found in cancers disrupt ASPP2 binding, arguing for an important role of ASPP2 in TP53-mediated tumor suppression. We now identify an oncogenic splicing variant, ASPP2κ, with high prevalence in acute leukemia.
View Article and Find Full Text PDFBackground: Based on our pre-clinical data, we hypothesized that sequencing chemotherapy with erlotinib would increase the tumor response rate in patients with metastatic colorectal cancer.
Patients And Methods: A phase II trial (planned n=58) using second-line therapy for metastatic colorectal cancer with either oxaliplatin-based (mFOLFOX6) or irinotecan-based (FOLFIRI) combination chemotherapy and 100 mg erlotinib daily on days 3-8 after each infusion (days 1 and 2) every 14 days. The primary endpoint was the response rate compared to the historical response rate.
Activating D816V mutations are frequently found in CBF AML, which predicts for an unfavorable outcome. Dasatinib is a potent inhibitor of wildtype and mutant-KIT isoforms - including D816V. We now provide proof of antileukemic efficacy in a patient with relapsing mutant- D816V CBF AML.
View Article and Find Full Text PDFActivating D816 mutations of the class III receptor tyrosine kinase are associated with the majority of patients with systemic mastocytosis (SM), but also core binding factor (CBF) AML, making mutations attractive therapeutic targets for the treatment of these cancers. Crenolanib is a potent and selective inhibitor of wild-type as well as mutant isoforms of the class III receptor tyrosine kinases FLT3 and PDGFRα/β. Notably, crenolanib inhibits constitutively active mutant-FLT3 isoforms resulting from amino acid substitutions of aspartic acid at codon 835, which is homologous to codon 816 in the gene - suggesting sensitivity against mutant-KIT D816 isoforms as well.
View Article and Find Full Text PDFBackground: It has been previously demonstrated in several cancer models, that Dronabinol (THC) may have anti-tumor activity--however, controversial data exists for acute leukemia. We have anecdotal evidence that THC may have contributed to disease control in a patient with acute undifferentiated leukemia.
Methods: To test this hypothesis, we evaluated the antileukemic efficacy of THC in several leukemia cell lines and native leukemia blasts cultured ex vivo.
Inactivation of the p53 pathway is a universal event in human cancers and promotes tumorigenesis and resistance to chemotherapy. Inactivating p53 mutations are uncommon in non-complex karyotype leukemias, thus the p53-pathway must be inactivated by other mechanisms. The Apoptosis Stimulating Protein of p53-2 (ASPP2) is a damage-inducible p53-binding protein that enhances apoptosis at least in part through a p53-mediated pathway.
View Article and Find Full Text PDFBackground: Dysregulation of the PI3Kinase/AKT pathway is involved in the pathogenesis of many human malignancies. In acute leukemia, the AKT pathway is frequently activated, however mutations in the PI3K/AKT pathway are uncommon. In some cases, constitutive AKT activation can be linked to gain-of-function tyrosine kinase (TK) mutations upstream of the PI3K/AKT pathway.
View Article and Find Full Text PDFMol Cancer
March 2013
Background: Activating mutations of class III receptor tyrosine kinases (RTK) FLT3, PDGFR and KIT are associated with multiple human neoplasms including hematologic malignancies, for example: systemic mast cell disorders (KIT), non-CML myeloproliferative neoplasms (PDGFR) and subsets of acute leukemias (FLT3 and KIT). First generation tyrosine kinase inhibitors (TKI) are rapidly being integrated into routine cancer care. However, the expanding spectrum of TK-mutations, bioavailability issues and the emerging problem of primary or secondary TKI-therapy resistance have lead to the search for novel second generation TKIs to improve target potency and to overcome resistant clones.
View Article and Find Full Text PDFThe ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus.
View Article and Find Full Text PDF