A recent series of extreme weather events in Southern U.S. (2022 winter freeze followed by 2023 summer drought) calls for quantitative markers to expedite the release of climate resilient sugarcane varieties.
View Article and Find Full Text PDFBackground: Biofilms are microbial communities surrounded by a self-produced extracellular matrix which protects them from environmental stress. Bacteria within biofilms are 10- to 1000-fold more resistant to antibiotics, making it challenging but imperative to develop new therapeutics that can disperse biofilms and eradicate infection. Gram-negative bacteria produce outer membrane vesicles (OMV) that play critical roles in communication, genetic exchange, cargo delivery, and pathogenesis.
View Article and Find Full Text PDFBackground: Despite recent evidence demonstrating the benefits of case-based and active learning strategies in medical education, many medical schools have reduced or entirely eliminated teaching laboratories in medical microbiology courses. The objective of our investigation was to analyze the impact of a voluntary hands-on microbiology laboratory session on students' knowledge retention and ability to apply the underlying principles to exam questions in our Introduction to Infectious Diseases (IID) course.
Methods: We compared the performance of students participating in the wet labs with those who did not, analyzing scores on exam questions directly related to the concepts presented in the laboratory session and their overall scores on the IID module exam.
Gram-negative bacteria secrete outer membrane vesicles (OMVs) that play critical roles in intraspecies, interspecies, and bacteria-environment interactions. Some OMVs, such as those produced by Pseudomonas aeruginosa, have previously been shown to possess antimicrobial activity against competitor species. In the current study, we demonstrate that OMVs from Burkholderia thailandensis inhibit the growth of drug-sensitive and drug-resistant bacteria and fungi.
View Article and Find Full Text PDFInfluenza A virus (IFV) replicates its genome in the nucleus of infected cells and uses the cellular protein transport system for genome trafficking from the nucleus to the plasma membrane. However, many details of the mechanism of this process, and its relationship to subsequent cytoplasmic virus trafficking, have not been elucidated. We examined the effect of nuclear transport inhibitors Leptomycin B (LB), 5,6 dichloro-1-β-d-ribofuranosyl-benzimidazole (DRB), the vesicular transport inhibitor Brefeldin A (BFA), the caspase inhibitor ZWEHD, and microtubule inhibitor Nocodazole (NOC) on virus replication and intracellular trafficking of viral nucleoprotein (NP) from the nucleus to the ER and Golgi.
View Article and Find Full Text PDFAnnotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone.
View Article and Find Full Text PDFPersistence of HIV-1 reservoirs within the Central Nervous System (CNS) remains a significant challenge to the efficacy of potent anti-HIV-1 drugs. The primary human Brain Microvascular Endothelial Cells (HBMVEC) constitutes the Blood Brain Barrier (BBB) which interferes with anti-HIV drug delivery into the CNS. The ATP binding cassette (ABC) transporters expressed on HBMVEC can efflux HIV-1 protease inhibitors (HPI), enabling the persistence of HIV-1 in CNS.
View Article and Find Full Text PDFThe field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2012
Tumor necrosis factor (TNF) is a key player in inflammatory bowel disease and has been variably associated with carcinogenesis, but details of the cross talk between inflammatory and tumorigenic pathways remain incompletely understood. It has been shown that, in C57BL/6 mice, signaling via TNF receptor 1 (TNFR1) is protective from injury and inflammation in experimental colitis. Therefore, we hypothesized that loss of TNFR1 signaling would confer increased risk of developing colitis-associated carcinoma.
View Article and Find Full Text PDFBurkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen.
View Article and Find Full Text PDFThe ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of human immunodeficiency virus-1 (HIV-1) protease inhibitors (HPIs), e.
View Article and Find Full Text PDFBone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers.
View Article and Find Full Text PDFThe spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model.
View Article and Find Full Text PDFStudies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a three-dimensional (3D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells, as has been demonstrated in non-neuronal cell lines.
View Article and Find Full Text PDFThe role of the pro-inflammatory peptide, LL-37, and its pro-form, human cationic antimicrobial protein 18 (hCAP-18), in cancer development and progression is poorly understood. In damaged and inflamed tissue, LL-37 functions as a chemoattractant, mitogen and pro-angiogenic factor suggesting that the peptide may potentiate tumor progression. The aim of this study was to characterize the distribution of hCAP-18/LL-37 in normal and cancerous ovarian tissue and to examine the effects of LL-37 on ovarian cancer cells.
View Article and Find Full Text PDFAlgR controls numerous virulence factors in Pseudomonas aeruginosa, including alginate, hydrogen cyanide production, and type IV pilus-mediated twitching motility. In this study, the role of AlgR in biofilms was examined in continuous-flow and static biofilm assays. Strain PSL317 (DeltaalgR) produced one-third the biofilm biomass of wild-type strain PAO1.
View Article and Find Full Text PDFHuman noroviruses cause severe, self-limiting gastroenteritis that typically lasts 24-48 hours. Because of the lack of suitable tissue culture or animal models, the true nature of norovirus pathogenesis remains unknown. We show, for the first time, that noroviruses can infect and replicate in a physiologically relevant 3-dimensional (3-D), organoid model of human small intestinal epithelium.
View Article and Find Full Text PDFIn vitro cell culture models used to study how Salmonella initiates disease at the intestinal epithelium would benefit from the recognition that organs and tissues function in a three-dimensional (3-D) environment and that this spatial context is necessary for development of cultures that more realistically resemble in vivo tissues/organs. Our aim was to establish and characterize biologically meaningful 3-D models of human colonic epithelium and apply them to study the early stages of enteric salmonellosis. The human colonic cell line HT-29 was cultured in 3-D and characterized by immunohistochemistry, histology, and scanning electron microscopy.
View Article and Find Full Text PDFMycobacterium avium and Mycobacterium tuberculosis are human pathogens that infect and replicate within macrophages. Both organisms live in phagosomes that fail to fuse with lysosomes and have adapted their lifestyle to accommodate the changing environment within the endosomal system. Among the many environmental factors that could influence expression of bacterial genes are the concentrations of single elements within the phagosomes.
View Article and Find Full Text PDFBacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem.
View Article and Find Full Text PDFEstablishment or maintenance of a persistent infection by Mycobacterium tuberculosis requires the glyoxylate pathway. This is a bypass of the tricarboxylic acid cycle in which isocitrate lyase and malate synthase (GlcB) catalyze the net incorporation of carbon during growth of microorganisms on acetate or fatty acids as the primary carbon source. The glcB gene from M.
View Article and Find Full Text PDF