Accumulation of lipids in non-adipose tissues is often associated with Type 2 diabetes and its complications. Elevated expression of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), has been demonstrated in islets and liver of diabetic animals. To elucidate the molecular mechanisms underlying SREBP-1c-induced beta-cell dysfunction, we employed the Tet-On inducible system to achieve tightly controlled and conditional expression of the nuclear active form of SREBP-1c (naSREBP-1c) in INS-1 cells.
View Article and Find Full Text PDFSix monogenic forms of maturity-onset diabetes of the young (MODY) have been identified to date. Except for MODY2 (glucokinase), all other MODY subtypes have been linked to transcription factors. We have established a MODY3 transgenic model through the beta-cell-targeted expression of dominant-negative HNF-1alpha either constitutively (rat insulin II promoter) or conditionally (Tet-On system).
View Article and Find Full Text PDFThe transcription factor Foxa2 is implicated in blood glucose homeostasis. Conditional expression of Foxa2 or its dominant-negative mutant DN-Foxa2 in INS-1 cells reveals that Foxa2 regulates the expression of genes important for glucose sensing in pancreatic beta-cells. Overexpression of Foxa2 results in blunted glucose-stimulated insulin secretion, whereas induction of DN-Foxa2 causes a left shift of glucose-induced insulin release.
View Article and Find Full Text PDF