Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than two decades to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs) and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II.
View Article and Find Full Text PDFDendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs).
View Article and Find Full Text PDFBRAF and MEK inhibitors (BRAFi/MEKi), the standard treatment for patients with BRAF mutated melanoma, are currently explored in combination with various immunotherapies, notably checkpoint inhibitors and adoptive transfer of receptor-transfected T cells. Since two BRAFi/MEKi combinations with similar efficacy are approved, potential differences in their effects on immune cells would enable a rational choice for triple therapies. Therefore, we characterized the influence of the clinically approved BRAFi/MEKi combinations dabrafenib (Dabra) and trametinib (Tram) vs.
View Article and Find Full Text PDFBackground: Adoptive T-cell therapy relying on conventional T cells transduced with T-cell receptors (TCRs) or chimeric antigen receptors (CARs) has caused substantial tumor regression in several clinical trials. However, genetically engineered T cells have been associated with serious side-effects due to off-target toxicities and massive cytokine release. To obviate these concerns, we established a protocol adaptable to GMP to expand and transiently transfect γ/δ T cells with mRNA.
View Article and Find Full Text PDFBackground: Merkel cell carcinoma (MCC) is a rare but very aggressive skin tumor that develops after integration of a truncated form of the large T-antigen (truncLT) of the Merkel cell polyomavirus (MCV) into the host's genome. Therapeutic vaccination with dendritic cells (DCs) loaded with tumor antigens is an active form of immunotherapy, which intends to direct the immune system towards tumors which express the respective vaccination antigens.
Methods: Cytokine-matured monocyte-derived DCs of healthy donors and MCC patients were electroporated with mRNA encoding the truncLT.
Monocytes are a part of the innate immune system. Their differentiation into macrophages changes their cellular proteome and secretome. Particularly secretome components such as cytokines are crucial for immune response and inflammation in many diseases.
View Article and Find Full Text PDFElectroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II.
View Article and Find Full Text PDFFor therapeutic cancer vaccination, the adoptive transfer of mRNA-electroporated dendritic cells (DCs) is frequently performed, usually with monocyte-derived, cytokine-matured DCs (moDCs). However, DCs are rich in danger-sensing receptors which could recognize the exogenously delivered mRNA and induce DC activation, hence influencing the DCs' immunogenicity. Therefore, we examined whether electroporation of mRNA with a proper cap and a poly-A tail of at least 64 adenosines had any influence on cocktail-matured moDCs.
View Article and Find Full Text PDFUnderstanding the signaling that governs the immunogenicity of human dendritic cells (DCs) is a prerequisite for improving DC-based therapeutic vaccination strategies, in which the ability of DCs to induce robust and lasting Ag-specific CTL responses is of critical importance. Cytokine-matured DCs are regularly used, but to induce memory-type CTLs, they require additional activation stimuli, such as CD4+ T-cell help or TLR activation. One common denominator of these stimuli is the activation of NF-κB.
View Article and Find Full Text PDF