Nearly all publications dealing with availability or bioavailability of soil pollutants start with the following statement: the determination of total pollutant content will lead to an over-estimation of risk. However, an assessment of contaminated sites should be based on the determination of mobile fractions of pollutants, and the fractions with potential for mobilisation that threaten groundwater and surface water, and the actual and potential fractions available for uptake by plants, soil microflora and soil organisms. After reviewing the literature for method proposals concerning the determination of available/bioavailable fractions of contaminants with respect to leaching, plants, microorganisms (biodegradation) and soil organisms, we propose a testing and assessment scheme for contaminated sites.
View Article and Find Full Text PDFChemical extraction techniques like non-exhaustive extraction with Tenax or hydroxypropyl-β-cyclodextrin (HPCD) have been shown to measure the biodegradable fraction of aromatic contaminants like PAHs in soil. However, there is little research on the chemical prediction of aliphatic hydrocarbon degradation. The aim of this study was to investigate the potential for HPCD and Tenax extractions to predict PAH and petroleum hydrocarbon biodegradation in soil.
View Article and Find Full Text PDFThe microbial degradation of 14C-pyrene and 14C-benzo[a]pyrene by a bacterial mixed culture was studied within a mixture of the PAHs phenanthrene, anthracene, pyrene, fluoranthene, and benzo[a]pyrene as sole carbon source in the different culture systems: (i) liquid medium, (ii) soil slurry (surface and grinding influence), and (iii) soil. The fate of these two labeled compounds was followed in these systems with an emphasis on mineralization to carbon dioxide, extractability, and adsorption to humic materials and formation of unextractable residual. Mineralization showed the most obvious differences: soil slurries achieved the best results both concerning the extent of mineralization and the time required.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
November 2004
The taxonomic position of a polycyclic-aromatic-hydrocarbon-degrading bacterium, strain 17A3(T), isolated from contaminated soil was determined using a combination of phenotypic and genotypic properties. The isolate showed phenotypic properties that were diagnostic for species of the genus Mycobacterium. Comparative 16S rRNA gene sequence analysis assigned 17A3(T) to the 16S rRNA gene subgroup that contains Mycobacterium aurum, Mycobacterium austroafricanum, Mycobacterium vaccae and Mycobacterium vanbaalenii, but it could clearly be distinguished from these species using a combination of physiological, chemotaxonomic markers and internal rRNA gene spacer analyses.
View Article and Find Full Text PDF