Allergic contact dermatitis is the most prevalent form of human immunotoxicity. It is caused by reactive low molecular weight chemicals, that is, haptens, coming in contact with the skin where hapten-peptide complexes are formed, activating the immune system. By using sensitizing fluorescent thiol-reactive haptens, that is, bromobimanes, we show how keratinocytes respond to hapten exposure in vitro and reveal, for the first time in a living system, an exact site of haptenation.
View Article and Find Full Text PDFAllergic contact dermatitis (ACD) is the most prevalent form of human immunotoxicity. It is caused by skin exposure to haptens, i.e.
View Article and Find Full Text PDFThe first step in the development of contact allergy (allergic contact dermatitis) includes the penetration of an allergy-causing chemical (hapten) into the skin, where it binds to macromolecules such as proteins. The protein-hapten adduct is then recognized by the immune system as foreign to the body. For hydroperoxides, no relevant hapten target proteins or protein-hapten adducts have so far been identified.
View Article and Find Full Text PDFEpoxy resins can be prepared from numerous chemical compositions. Until recently, alternatives to epoxy resins based on diglycidyl ethers of bisphenol A (DGEBA) or bisphenol F (DGEBF) monomers have not received commercial interest, but are presently doing so, as epoxy resins with various properties are desired. Epoxy resin systems are known to cause allergic contact dermatitis because of contents of uncured monomers, reactive diluents, and hardeners.
View Article and Find Full Text PDFMetabolic activation of chemicals (prohaptens) in the skin can cause allergic contact dermatitis. We have explored structure-allergenic activity relationships for seven potential oxime prohaptens using the local lymph node assay and a GSH trapping screen with liver microsomes. The general structure-allergenic activity relationships found were that an alpha,beta-unsaturation is necessary for an oxime to be a prohapten and that increased steric hindrance around this double bond leads to reduction in sensitizing capacity.
View Article and Find Full Text PDFProtein Expr Purif
January 2008
We have previously developed a labeling scheme that can be used to site-specifically link human glutathione transferases (hGSTs) from the alpha class to chemical entities such as fluorophores and aldehydes. The reagents are in-house synthesized derivatives of glutathione (GS-derivatives). We have focused on a lysine mutant of hGST A1:A216K.
View Article and Find Full Text PDFA multipurpose receptor akin to the "electronic nose" was composed of coumarin-labeled mutants of human glutathione transferase A1. We have previously constructed a kit for site-specific modification of a lysine residue (A216K) using a thiol ester of glutathione (GSC-Cou bio) as a modifying reagent. In the present investigation, we scrambled the hydrophobic binding site (H-site) of the protein scaffold through mutations at position M208 via random mutagenesis and isolated a representative library of 11 A216K/M208X mutants.
View Article and Find Full Text PDFHuman glutathione transferase (hGST) A1-1 and a lysine mutant (A216K) can both be rapidly and site-specifically acylated on Y9 and K216, respectively, using a range of thiolesters of glutathione (GS-thiolesters) as modifying reagents. The present investigation was aimed at developing a method with which to deliver a fluorescent acyl group from a solid support under conditions compatible with standard protein purification schemes. A number of fluorescent GS-thiolesters with modified peptide backbones were therefore prepared and tested for reactivity toward hGST A1-1 and the A216K mutant.
View Article and Find Full Text PDFHuman glutathione transferase A1-1 (hGST A1-1) can be reengineered by rational design into a catalyst for thiolester hydrolysis with a catalytic proficiency of 1.4 x 10(7) M(-1). The thiolester hydrolase, A216H that was obtained by the introduction of a single histidine residue at position 216 catalyzed the hydrolysis of a substrate termed GSB, a thiolester of glutathione and benzoic acid.
View Article and Find Full Text PDFPreviously, we discovered that human glutathione transferase (hGST) A1-1 could be site-specifically acylated on a tyrosine residue (Y9) to form ester products using thiolesters of glutathione (GS-thiolesters) as acylating reagents. Out of a total of 20 GS-thiolester reagents tested, 15 (75%) are accepted by hGST A1-1 and thus this is a very versatile reaction. The present investigation was aimed at obtaining a more stable product, an amide bond, between the acyl group and the protein, in order to further increase the value of the reaction.
View Article and Find Full Text PDFA strategy for rational enzyme design is reported and illustrated by the engineering of a protein catalyst for thiol-ester hydrolysis. Five mutants of human glutathione (GSH; gamma-Glu-Cys-Gly) transferase A1-1 were designed in the search for a catalyst and to provide a set of proteins from which the reaction mechanism could be elucidated. The single mutant A216H catalyzed the hydrolysis of the S-benzoyl ester of GSH under turnover conditions with a k(cat)/K(M) of 156 M(-1) x min(-1), and a catalytic proficiency of >10(7) M(-1) when compared with the first-order rate constant of the uncatalyzed reaction.
View Article and Find Full Text PDFPreviously, we discovered that human glutathione transferases (hGSTs) from the alpha class can be rapidly and quantitatively modified on a single tyrosine residue (Y9) using thioesters of glutathione (GS-thioesters) as acylating reagents. The current work was aimed at exploring the potential of this site-directed acylation using a combinatorial approach, and for this purpose a panel of 17 GS-thioesters were synthesized in parallel and used in screening experiments with the isoforms hGSTs A1-1, A2-2, A3-3, and A4-4. Through analytical HPLC and MALDI-MS experiments, we found that between 70 and 80% of the reagents are accepted and this is thus a very versatile reaction.
View Article and Find Full Text PDFHere we describe a new route to site- and class-specific protein modification that will allow us to create novel functional proteins with artificial chemical groups. Glutathione transferases from the alpha but not the mu, pi, omega, or theta classes can be rapidly and site-specifically acylated with thioesters of glutathione (GS-thioesters) that are similar to compounds that have been demonstrated to occur in vivo. The human isoforms A1-1, A2-2, A3-3, and A4-4 from the alpha class all react with the reagent at a conserved tyrosine residue (Y9) that is crucial in catalysis of detoxication reactions.
View Article and Find Full Text PDFThe correlation between sequence diversity and enzymatic function was studied in a library of Theta class glutathione transferases (GSTs) obtained by stochastic recombination of fragments of cDNA encoding human GST T1-1 and rat GST T2-2. In all, 94 randomly picked clones were characterized with respect to sequence, expression level, and catalytic activity in the conjugation reactions between glutathione and six alternative electrophilic substrates. Out of these six different compounds, dichloromethane is a selective substrate for human GST T1-1, whereas 1-menaphthyl sulfate and 1-chloro-2,4-dinitrobenzene are substrates for rat GST T2-2.
View Article and Find Full Text PDF