Publications by authors named "Kerstin Bose"

Tissue development and regeneration rely on the cooperation of multiple mesenchymal progenitor (MP) subpopulations. We recently identified Hic1 as a marker of quiescent MPs in multiple adult tissues. Here, we describe the embryonic origin of appendicular Hic1 MPs and demonstrate that they arise in the hypaxial somite, and migrate into the developing limb at embryonic day 11.

View Article and Find Full Text PDF

Retinoic acid (RA) plays important roles in development, growth, and homeostasis through regulation of the nuclear receptors for RA (RARs). Herein, we identify Hypermethylated in Cancer 1 (Hic1) as an RA-inducible gene. HIC1 encodes a tumor suppressor, which is often silenced by promoter hypermethylation in cancer.

View Article and Find Full Text PDF

Pluripotency requires the expression of the three core transcriptions factors Oct4, Sox2 and Nanog, as well as further, complementary proteins. The geminin protein is part of this network, and was shown to play a role in the regulation of DNA replication, the control of the cell cycle, and the acquisition of neural fate. It is highly expressed in the early embryo, in particular the epiblast and the early neural ectoderm, and also in pluripotent embryonic stem cells.

View Article and Find Full Text PDF

Nidogens/entactins are a family of highly conserved, sulfated glycoproteins. Biochemical studies have implicated them as having a major structural role in the basement membrane. However despite being ubiquitous components of this specialized extracellular matrix and having a wide spectrum of binding partners, genetic analysis has shown that they are not required for the overall architecture of the basement membrane.

View Article and Find Full Text PDF

Netrins were first identified as neural guidance molecules, acting through receptors that are members of the DCC and UNC-5 family. All netrins share structural homology to the laminin N-terminal domains and the laminin epidermal growth factor-like domains of laminin short arms. Laminins use these domains to self-assemble into complex networks.

View Article and Find Full Text PDF

Nidogens are two ubiquitous basement membrane proteins produced mainly by mesenchymal cells. Nidogen-mediated interactions, in particular with laminin, collagen IV, and perlecan have been considered important in the formation and maintenance of the basement membrane. However, whereas mice lacking both nidogen isoforms or carrying mutations in the high affinity nidogen-binding site upon the laminin gamma1 chain have specific basement membrane defects in certain organs, particularly in the lung, characterization of these mice has also shown that basement membrane formation per se does not need nidogens or the laminin-nidogen interaction.

View Article and Find Full Text PDF