Speciation generates biodiversity and the mechanisms involved are thought to vary across the tree of life and across environments. For example, well-studied adaptive radiations are thought to be fuelled by divergent ecological selection, but additionally are influenced heavily by biogeographic, genomic and demographic factors. Mechanisms of non-adaptive radiations, producing ecologically cryptic taxa, have been less well-studied but should likewise be influenced by these latter factors.
View Article and Find Full Text PDFA central role for sexual isolation in the formation of new species and establishment of species boundaries has been noticed since Darwin and is frequently emphasized in the modern literature on speciation. However, an objective evaluation of when and how sexual isolation plays a role in speciation has been carried out in few taxa. We discuss three approaches for assessing the importance of sexual isolation relative to other reproductive barriers, including the relative evolutionary rate of sexual trait differentiation, the relative strength of sexual isolation in sympatry, and the role of sexual isolation in the long-term persistence of diverging forms.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
August 2024
Coupling has emerged as a concept to describe the transition from differentiated populations to newly evolved species through the strengthening of reproductive isolation. However, the term has been used in multiple ways, and relevant processes have sometimes not been clearly distinguished. Here, we synthesize existing uses of the concept of coupling and find three main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci underlying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage disequilibrium, and (3) coupling as the process generating a coincidence of distinct barrier effects.
View Article and Find Full Text PDFSexual signalling traits and their associated genetic components play a crucial role in the speciation process, as divergence in these traits can contribute to sexual isolation. Despite their importance, our understanding of the genetic basis of variable sexual signalling traits linked to speciation remains limited. In this study, we present new genetic evidence of Quantitative Trait Loci (QTL) underlying divergent sexual signalling behaviour, specifically pulse rate, in the Hawaiian cricket Laupala.
View Article and Find Full Text PDFSexual signalling traits are often observed to diverge rapidly among populations, thereby playing a potentially key early role in the evolution of reproductive isolation. While often assumed to reflect divergent sexual selection among populations, patterns of sexual trait diversification might sometimes be biased along axes of standing additive genetic variation and covariation among trait components. Additionally, theory predicts that environmentally induced phenotypic variation might facilitate rapid trait evolution, suggesting that patterns of divergence between populations should mirror phenotypic plasticity within populations.
View Article and Find Full Text PDFIn nature, closely related species commonly display divergent mating behaviors, suggesting a central role for such traits in the origin of species. Elucidating the genetic basis of divergence in these traits is necessary to understand the evolutionary process leading to reproductive barriers and speciation. The rapidly speciating Hawaiian crickets of the genus Laupala provides an ideal system for dissecting the genetic basis of mating behavior divergence.
View Article and Find Full Text PDFSympatry among closely related species occurs in both adaptive and nonadaptive radiations. Among closely related, sympatric species of a nonadaptive radiation, the lack of ecological differentiation brings species into continual contact where individuals are exposed to the risk of reproductive interference. Selection thus should cause divergence in multiple components mediating the reproductive boundary.
View Article and Find Full Text PDFThe divergence of sexual signals is ultimately a coevolutionary process: while signals and preferences diverge between lineages, they must remain coordinated within lineages for matings to occur. Divergence in sexual signals makes a major contribution to evolving species barriers. Therefore, the genetic architecture underlying signal-preference coevolution is essential to understanding speciation but remains largely unknown.
View Article and Find Full Text PDFWhen the same phenotype evolves repeatedly, we can explore the predictability of genetic changes underlying phenotypic evolution. Theory suggests that genetic parallelism is less likely when phenotypic changes are governed by many small-effect loci compared to few of major effect, because different combinations of genetic changes can result in the same quantitative outcome. However, some genetic trajectories might be favoured over others, making a shared genetic basis to repeated polygenic evolution more likely.
View Article and Find Full Text PDFDifferences in mating behaviors evolve early during speciation, eventually contributing to reproductive barriers between species. Knowledge of the genetic and genomic basis of these behaviors is therefore integral to a causal understanding of speciation. Acoustic behaviors are often part of the mating ritual in animal species.
View Article and Find Full Text PDFMating behavior divergence can make significant contributions to reproductive isolation and speciation in various biogeographic contexts. However, whether the genetic architecture underlying mating behavior divergence is related to the biogeographic history and the tempo and mode of speciation remains poorly understood. Here, we use quantitative trait locus (QTL) mapping to infer the number, distribution, and effect size of mating song rhythm variations in the crickets and , which occur on different islands (Maui and Hawaii).
View Article and Find Full Text PDFPhenotypic evolution and speciation depend on recombination in many ways. Within populations, recombination can promote adaptation by bringing together favorable mutations and decoupling beneficial and deleterious alleles. As populations diverge, crossing over can give rise to maladapted recombinants and impede or reverse diversification.
View Article and Find Full Text PDFTwo major challenges exist when empirically testing the predictions of sperm allocation theory. First, the study species must adhere to the assumptions of the model being tested. Unfortunately, the common assumption of sperm allocation models that females mate a maximum of once or twice does not hold for many, if not most, multiply and sequentially mating animals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2016
Remote island archipelagos offer superb opportunities to study the evolution of community assembly because of their relatively young and simple communities where speciation contributes to the origin and evolution of community structure. There is great potential for common phylogeographic patterns among remote archipelagos that originate through hotspot volcanism, particularly when the islands formed are spatially isolated and linearly arranged. The progression rule is characterized by a phylogeographic concordance between island age and lineage age in a species radiation.
View Article and Find Full Text PDFRichard G. Harrison passed away unexpectedly on April 12th, 2016. In this memoriam we pay tribute to the life and legacy of an extraordinary scientist, mentor, friend, husband, and father.
View Article and Find Full Text PDFWhen females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number.
View Article and Find Full Text PDFIn polygamous systems, male fitness is determined not only by mating success but also by fertilization success. Despite the growing interest over the past several decades in postcopulatory sexual selection, its relative importance compared to precopulatory sexual selection remains a subject of debate. Here, we use extensive behavioral observations of a seminatural population of Hawaiian swordtail crickets, Laupala cerasina, and molecular paternity assignment to measure the opportunities for pre- and postcopulatory selection.
View Article and Find Full Text PDFDarwin's "mystery of mysteries," the origin of species, is caused by the evolution of speciation phenotypes, i.e. phenotypic differences that depress gene flow between daughter species during speciation.
View Article and Find Full Text PDFThe study of speciation is concerned with understanding the connection between causes of divergent evolution and the origin and maintenance of barriers to gene exchange between incipient species. Although the field has historically focused either on examples of recent divergence and its causes or on the genetic basis of reproductive isolation between already divergent species, current efforts seek to unify these two approaches. Here we integrate these perspectives through a discussion of recent progress in several insect speciation model systems.
View Article and Find Full Text PDFComplex, quantitative traits are often the function of the coordinated action of many physically independent genetic factors. Interactive properties of multilocus genotypes, such as epistasis, are thought to be pervasive components of the genetic architecture of complex phenotypes. Here, we utilize a panel of interspecific backcross introgression lines to evaluate the genetic architecture of song variation, a quantitative sexual signaling phenotype, in the Hawaiian swordtail cricket genus Laupala.
View Article and Find Full Text PDFEstimating the fitness surface of rapidly evolving secondary sexual traits can elucidate the origins of sexual isolation and thus speciation. Evidence suggests that sexual selection is highly complex in nature, often acting on multivariate sexual characters that sometimes include non-heritable components of variation, thus presenting a challenge for predicting patterns of sexual trait evolution. Laupala crickets have undergone an explosive species radiation marked by divergence in male courtship song and associated female preferences, yet patterns of sexual selection that might explain this diversification remain unknown.
View Article and Find Full Text PDFDaily activity times and circadian rhythms of crickets have been a subject of behavioral and physiological study for decades. However, recent studies suggest that the underlying molecular mechanism of cricket endogenous clocks differ from the model of circadian rhythm generation in Drosophila. Here we examine the circadian free-running periods of walking and singing in two Hawaiian swordtail cricket species, Laupala cerasina and Laupala paranigra, that differ in the daily timing of mating related activities.
View Article and Find Full Text PDF